
Appendix A: Functions and Instructions 435
8992APPA.DOC TI-89 / TI-92 Plus: Appendix A (US English) Susan Gullord Revised: 02/23/01 1:48 PM Printed: 02/23/01 2:21 PM Page 435 of 132
Apply solve() to an implicit solution if you
want to try to convert it to one or more
equivalent explicit solutions.
deSolve(y'=(cos(y))^2ùx,x,y)
¸
tan(y)=
x
ñ
2 +@3
When comparing your results with textbook
or manual solutions, be aware that different
methods introduce arbitrary constants at
different points in the calculation, which may
produce different general solutions.
solve(ans(1),y) ¸
y=tanê(x
ñ
+2ø@3
2)+@n1øp
Note: To type an @ symbol, press:
TI-89: ¥ §
TI-92 Plus: 2R
ans(1)|@3=cì1 and @n1=0 ¸
y=tanê(x
ñ
+2ø(cì1)
2)
deSolve(1stOrderOde and initialCondition,
independentVar, dependentVar)
⇒ a particular solution
Returns a particular solution that satisfies
1stOrderOde and initialCondition. This is
usually easier than determining a general
solution, substituting initial values, solving
for the arbitrary constant, and then
substituting that value into the general
solution.
initialCondition is an equation of the form:
dependentVar (initialIndependentValue) =
initialDependentValue
The initialIndependentValue and
initialDependentValue can be variables such as
x0 and y0 that have no stored values. Implicit
differentiation can help verify implicit
solutions.
sin(y)=(yùe^(x)+cos(y))y'!ode
¸
sin(y)=(exøy+cos(y))øy'
deSolve(ode and
y(0)=0,x,y)!soln ¸
ë(2øsin(y)+yñ)
2 =ë(exì1)øeëxøsin(y)
soln|x=0 and y=0 ¸true
d(right(eq)ìleft(eq),x)/
(d(left(eq)ìright(eq),y))
!impdif(eq,x,y) ¸
Done
ode|y'=impdif(soln,x,y) ¸
true
DelVar ode,soln ¸Done
deSolve(2ndOrderOde and initialCondition1 and
initialCondition2, independentVar,
dependentVar) ⇒ a particular solution
Returns a particular solution that satisfies
2ndOrderOde and has a specified value of the
dependent variable and its first derivative at
one point.
deSolve(y''=y^(ë1/2) and
y(0)=0 and y'(0)=0,t,y) ¸
2øy3/4
3 =t
solve(ans(1),y) ¸
y=
22/3ø(3øt)4/3
4 and t‚0
For initialCondition1, use the form:
dependentVar (initialIndependentValue) =
initialDependentValue
For initialCondition2, use the form:
dependentVar' (initialIndependentValue) =
initial1stDerivativeValue