
470 Appendix A: Functions and Instructions
8992APPA.DOC TI-89 / TI-92 Plus: Appendix A (US English) Susan Gullord Revised: 02/23/01 1:48 PM Printed: 02/23/01 2:21 PM Page 470 of 132
mRowAdd() MATH/Matrix/Row ops menu
mRowAdd(expression, matrix1, index1, index2)
⇒ matrix
Returns a copy of matrix1 with each element
in row index2 of matrix1 replaced with:
expression × row index1 + row index2
mRowAdd(ë3,[1,2;3,4],1,2) ¸
[
1
2
0 L2]
mRowAdd(n,[a,b;c,d],1,2) ¸
[a
aøn+c
b
bøn+d]
nCr() MATH/Probability menu
nCr(expression1, expression2) ⇒ expression
For integer expression1 and expression2 with
expression1 ‚ expression2 ‚ 0, nCr() is the
number of combinations of expression1 things
taken expression2 at a time. (This is also
known as a binomial coefficient.) Both
arguments can be integers or symbolic
expressions.
nCr(expression, 0) ⇒ 1
nCr(expression, negInteger) ⇒ 0
nCr(expression, posInteger) ⇒
expression
ø
(expressionì1)...
(expression
ì
posInteger+1)/ posInteger!
nCr(expression, nonInteger) ⇒ expression!/
((expression
ì
nonInteger)!
ø
nonInteger!)
nCr(z,3) zø(zì2)ø(zì1)
6
ans(1)|z=5 10
nCr(z,c) z!
c!(zìc)!
ans(1)/nPr(z,c) 1
c!
nCr(list1, list2) ⇒ list
Returns a list of combinations based on the
corresponding element pairs in the two lists.
The arguments must be the same size list.
nCr({5,4,3},{2,4,2}) ¸
{10 1 3}
nCr(matrix1, matrix2) ⇒ matrix
Returns a matrix of combinations based on
the corresponding element pairs in the two
matrices. The arguments must be the same
size matrix.
nCr([6,5;4,3],[2,2;2,2]) ¸
[15 10
6 3 ]
nDeriv() MATH/Calculus menu
nDeriv(expression1, var[, h]) ⇒ expression
nDeriv(expression1, var, list) ⇒ list
nDeriv(list, var[, h]) ⇒ list
nDeriv(matrix, var[, h]) ⇒ matrix
Returns the numerical derivative as an
expression. Uses the central difference
quotient formula.
h is the step value. If h is omitted, it defaults
to 0.001.
When using list or matrix, the operation gets
mapped across the values in the list or across
the matrix elements.
Note: See also avgRC() and d().
nDeriv(cos(x),x,h) ¸
ë
(
cos
(
xì
h)
ìcos
(
x+
h))
2øh
limit(nDeriv(cos(x),x,h),h,0)
¸
ësin(x)
nDeriv(x^3,x,0.01) ¸
3.ø
(
x
ñ
+.000033
)
nDeriv(cos(x),x)|x=p/2 ¸
ë
1
.
nDeriv(x^2,x,{.01,.1}) ¸
{
2.øx 2.øx
}