Appendix A: Functions and Instructions 511
8992APPA.DOC TI-89 / TI-92 Plus: Appendix A (US English) Susan Gullord Revised: 02/23/01 1:48 PM Printed: 02/23/01 2:21 PM Page 511 of 132
tanê() TI-89: ¥ S key TI-92 Plus: 2 S key
tanê(expression1) expression
tanê(list1) list
tanê(expression1) returns the angle whose
tangent is expression1 as an expression.
tanê(list1) returns a list of the inverse
tangents of each element of list1.
Note: The result is returned as either a
degree or radian angle, according to the
current angle mode setting.
In Degree angle mode:
tanê(1) ¸45
In Radian angle mode:
tanê({0,.2,.5}) ¸
{0 .197... .463...}
tanê(squareMatrix1) squareMatrix
Returns the matrix inverse tangent of
squareMatrix1. This is not the same as
calculating the inverse tangent of each
element. For information about the
calculation method, refer to cos().
squareMatrix1 must be diagonalizable. The
result always contains floating-point
numbers.
In Radian angle mode:
tanê([1,5,3;4,2,1;6,ë2,1])
¸
ë.083… 1.266… .622…
.748… .630… ë.070…
1.686… ë1.182… .455…
tanh() MATH/Hyperbolic menu
tanh(expression1) expression
tanh(list1) list
tanh(expression1) returns the hyperbolic
tangent of the argument as an expression.
tanh(list) returns a list of the hyperbolic
tangents of each element of list1.
tanh(1.2) ¸.833...
tanh({0,1}) ¸{0 tanh(1)}
tanh(squareMatrix1) squareMatrix
Returns the matrix hyperbolic tangent of
squareMatrix1. This is not the same as
calculating the hyperbolic tangent of each
element. For information about the
calculation method, refer to cos().
squareMatrix1 must be diagonalizable. The
result always contains floating-point
numbers.
In Radian angle mode:
tanh([1,5,3;4,2,1;6,ë2,1])
¸
ë.097… .933… .425…
.488… .538… ë.129…
1.282… ë1.034… .428…
tanhê() MATH/Hyperbolic menu
tanhê(expression1) expression
tanhê(list1) list
tanhê(expression1) returns the inverse
hyperbolic tangent of the argument as an
expression.
tanhê(list1) returns a list of the inverse
hyperbolic tangents of each element of list1.
In rectangular complex format mode:
tanhê(0) ¸0
tanhê({1,2.1,3}) ¸
{ˆ .518... ì1.570...øi ln(2)
2ìp
2øi}