System Issues and Challenges

Contingency

Today, many organizations have contingency plans for critical areas of their business. Some deal with natural disasters and others with the loss of power in critical areas. However, few have actually taken the time to think about what a loss of cooling would mean to their facility. If the cooling system failed or was suddenly grossly undersized due to weather, etc., how would that affect business? What financial risk would be involved with a loss of cooling?

Cooling contingency planning is intended to minimize the losses a facility may incur as a result of a total or partial loss of cooling. It allows a building owner to act more quickly by having a plan in place and by proactively preparing his or her facility to accept temporary equipment. Although a number of facilities are prepared after the construction phase, the construction phase provides an easy and cost-effective opportunity to prepare a facility and is a logical time to provide water stub outs and electrical connections. This helps to keep costs down and reduces the need to shut down existing equipment to make necessary building preparations.

Cooling contingency planning is the process of preparing for a loss of cooling while in a non-emergency situation. This allows common sense, rather than panic, to prevail during a critical event. The following topics are general and broad in scope. They provide a sense of what is involved in the planning process. Contingency planning itself is very detailed and situation-specific.

Minimum capacity required

It is important to first identify the minimum capacity required. With multiple chillers in a facility, it may be acceptable to have less tonnage in an emergency situation. For example, a facility’s chiller plant may consist of 1,800 tons [6,330 kW], but the minimum tonnage required may only be 1,200 tons [4,220 kW]. Therefore, it is also important to identify the plan of action if Chiller 1 fails, if Chiller 2 fails, if Chillers 2 and 3 fail, and so on.

Type and size of chiller

The type and size of contingency cooling required by a facility are determined by several factors. In turn, the choice of chiller determines how the facility is prepared. Examples of parameters that determine the chiller are:

Electrical requirements

Ease of installation (air-cooled chillers are easier to set up)

Location or available space

Comfort or process cooling

SYS-APM001-EN

Chiller System Design and Control

81

Page 87
Image 87
Trane SYS-APM001-EN manual Contingency, Minimum capacity required, Type and size of chiller

SYS-APM001-EN specifications

The Trane SYS-APM001-EN is an advanced control system designed for HVAC (Heating, Ventilation, and Air Conditioning) applications, specifically tailored to enhance energy efficiency and system performance. This comprehensive solution integrates cutting-edge technologies to optimize climate control in commercial and industrial environments.

One of the main features of the SYS-APM001-EN is its intuitive user interface. The system is equipped with a large, easy-to-read display that provides real-time data on system performance, energy usage, and environmental conditions. This user-friendly interface makes it simple for operators to monitor and adjust settings, ensuring optimal comfort levels and efficient energy consumption.

Another key characteristic of the SYS-APM001-EN is its advanced data analytics capabilities. The system collects and analyzes data from various sensors throughout the building, providing insights into occupancy patterns, equipment performance, and energy consumption trends. This data-driven approach allows facility managers to make informed decisions about system adjustments, predictive maintenance, and energy savings.

The SYS-APM001-EN also boasts robust integration capabilities. It can seamlessly connect with a variety of building management systems (BMS) and other third-party devices. This interoperability enables a cohesive operational ecosystem where HVAC systems can communicate and cooperate with lighting, security, and fire safety systems, enhancing overall building efficiency.

Energy efficiency is a hallmark of the SYS-APM001-EN, as it implements sophisticated algorithms to optimize system operation. These algorithms adjust equipment performance in real-time based on current conditions, thereby reducing energy waste and lowering operational costs. The system is designed to support multiple energy-saving strategies, including demand-controlled ventilation and optimal start/stop scheduling.

Additionally, the SYS-APM001-EN is built with scalability in mind, accommodating facilities of various sizes and configurations. Whether it’s a small office building or a large industrial complex, the system can be tailored to meet specific needs, ensuring that HVAC performance aligns with operational goals.

In conclusion, the Trane SYS-APM001-EN is an innovative HVAC control solution that emphasizes user experience, data-driven decision-making, and energy efficiency. With its advanced features and technologies, it is an essential tool for optimizing building performance and enhancing occupant comfort while reducing environmental impact.