Agilent Technologies 86100A, B manual U T I O N

Page 5

C A U T I O N

C A U T I O N

Installation Guide

General Safety Considerations

Electrical channel input circuits and the trigger input circuit can be damaged by electrostatic discharge (ESD). Therefore, avoid applying static discharges to the front-panel input connectors. Prior to connecting any coaxial cable to the connectors, momentarily short the center and outer conductors of the cable together. Avoid touching the front-panel input connectors without first touching the frame of the instrument. Be sure that the instrument is properly earth-grounded to prevent buildup of static charge. Wear a wrist-strap or heel- strap.

Optical channel fiber-optic connectors are easily damaged when connected to dirty or damaged cables and accessories. When you use improper cleaning and handling techniques, you risk expensive instrument repairs, damaged cables, and compromised measurements. Before you connect any fiber-optic cable to the Infiniim DCA, Chapter 1 in the Infiniium DCA’s Quick Start Guide.

5

Image 5
Contents Agilent 86100A/B Series Plug-in Modules Installation Guide To install the module into the Infiniium DCA Installation InstructionsUsing an Agilent 86100A General Safety Considerations U T I O N Declaration of Conformity Regulatory Information Manual Part Number
Related manuals
Manual 274 pages 13.6 Kb Manual 16 pages 47.65 Kb

86100A, B specifications

Agilent Technologies B,86100A is a high-performance oscilloscope and signal integrity analyzer designed primarily for advanced digital communications applications. As a versatile tool, it supports a wide range of testing needs, making it indispensable for engineers and researchers involved in the development and testing of high-speed digital signals.

One of the standout features of the B,86100A is its capability to analyze signals with various bandwidths, accommodating both current and emerging communication standards. The device features a sampling rate of up to 80 GS/s and bandwidth capabilities of 33 GHz to ensure high accuracy in capturing fast signal transitions, which is critical for ensuring the integrity of complex digital signals.

The B,86100A employs Agilent's proprietary digital signal processing (DSP) technology, which significantly enhances measurement precision and reduces noise, enabling users to obtain clearer insights into signal behavior. Its advanced triggering capabilities allow for precise signal capture, making it particularly useful in troubleshooting and validating high-speed designs, as well as in evaluating the performance of optical and electrical devices.

In addition to its high-speed capabilities, the B,86100A offers a robust set of measurement tools including jitter analysis, eye diagram analysis, and equalization assessment. These features allow engineers to effectively analyze signal quality and address potential issues related to signaling distortions and inter-symbol interference.

The graphical user interface of the B,86100A is intuitive, enabling users to efficiently navigate through measurement options and visualize data results. Customizable measurement setups streamline workflow, ensuring that users can quickly adapt their tests to evolving project requirements.

Another key characteristic of the B,86100A is its modularity. The system supports a variety of plug-in modules, which can be tailored to specific application needs, such as different types of optical and electrical signals. This flexibility not only extends the operational capability of the instrument but also makes it a future-proof investment as technology continues to evolve.

In summary, Agilent Technologies B,86100A combines high-speed acquisition with advanced processing capabilities, making it an essential instrument for anyone involved in high-speed digital design and testing. With its ability to deliver precise measurements and extensive analysis features, it empowers engineers to achieve optimal performance and reliability in their systems.