Delta Electronics LCP-1250B4MDRx specifications Delta ELECTRONICS, INC

Page 5

Notes:

1)TX Fault is an open collector/drain output, which should be pulled up with a 4.7K – 10KΩ resistor on the host board. Pull up voltage between 2.0V and VccT, R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

2)TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7 – 10 K Ω resistor. Its states are:

Low (0 – 0.8V):

Transmitter on

(>0.8, < 2.0V):

Undefined

High (2.0 – 3.465V):

Transmitter Disabled

Open:

Transmitter Disabled

3)Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7K – 10KΩresistor on the host board. The pull-up voltage shall be VccT or VccR (see Section IV for further details). Mod-Def 0 is grounded by the module to indicate that the module is present Mod-Def 1 is the clock line of two wire serial interface for serial ID Mod-Def 2 is the data line of two wire serial interface for serial ID

4)LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K – 10KΩ resistor. Pull up voltage between 2.0V and VccT, R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

5)VeeR and VeeT may be internally connected within the SFP module.

6)RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 370 and 2000 mV differential (185 – 1000 mV single ended) when properly terminated.

7)VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP transceiver module.

8)TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 500 – 2400 mV (250 – 1200 mV single-ended), though it is recommended that values between 500 and 1200 mV differential (250 – 600 mV single-ended) be used for best EMI performance.

5

2007/11/29

 

Rev. 0A

DELTA ELECTRONICS, INC.

www.deltaww.com

Image 5
Contents Performance Description ApplicationsRecommended Operating Conditions Electrical CharacteristicsAbsolute Maximum Ratings Mask of the eye diagram for the optical transmit signal Optical CharacteristicsMOD-DEF2 Delta ELECTRONICS, INC PLD / PAL Package Outline Drawing SFP timing parameters for SFP management Parameter Symbol Min Max UnitEnhanced Digital Diagnostic Interface Eeprom Serial ID Memory Contents 2-Wire Address A0h Address Name Value Dec Unit Bytes Digital Diagnostic Monitoring InterfaceState/ Control Bits Optional Set of Alarm and WarningOrdering information for SFP modules X1 TemperatureRegulatory Compliance Revision History