Measurement Specialties USB-1616HS-2 manual Analog input scanning, Settling time

Page 19

USB-1616HS-2 User's Guide

Functional Details

Analog input

The USB-1616HS-2 has a 16-bit, 1-MHz A/D coupled with 16 single-ended, or eight differential analog inputs. Seven software programmable ranges provide inputs from ±10 V to ±100 mV full scale.

Analog input scanning

The USB-1616HS-2 has several scanning modes to address various applications. You can load the 512-location scan buffer with any combination of analog input channels. All analog input channels in the scan buffer are measured sequentially at 1 µs per channel by default.

For example, in the fastest mode, with ADC settling time set to 1 µs, a single analog channel can be scanned continuously at 1 MS/s; two analog channels can be scanned at 500 kS/s each; 16 analog input channels can be scanned at 62.5 kS/s.

Settling time

For most applications, leave the settling time at its default of 1 µs.

However, if you are scanning multiple channels, and one or more channels are connected to a high-impedance source, you may get better results by increasing the settling time. Remember that increasing the settling time reduces the maximum acquisition rate.

You can set the settling time to 1 µs, 5 µs, 10 µs, or 1 ms.

Example: Analog channel scanning of voltage inputs

Figure 7 shows a simple acquisition. The scan is programmed pre-acquisition and is made up of six analog channels (Ch0, Ch1, Ch3, Ch4, Ch6, and Ch7). Each of these analog channels can have a different gain. The acquisition is triggered and the samples stream to the PC. Each analog channel requires one microsecond of scan time—therefore the scan period can be no shorter than 6 µs for this example. The scan period can be made much longer than 6 µs—up to 1 s. The maximum scan frequency is one divided by 6 µs, or 166,666 Hz.

Figure 7. Analog channel scan of voltage inputs example

Example: Analog channel scanning of voltage and temperature inputs

Figure 8 shows a programmed pre-acquisition scan made up of six analog channels (Ch0, Ch1, Ch5, Ch11, Ch12, Ch13). Each of these analog channels can have a different gain. You can program channels 0 and 1 to directly measure TCs.

In this mode, oversampling is programmable up to 16384 oversamples per channel in the scan group. When oversampling is applied, it is applied to all analog channels in the scan group, including temperature and voltage channels. Digital channels are not oversampled.

19

Image 19
Contents Page USB-1616HS-2 Management committed to your satisfaction Trademark and Copyright Information Table of Contents USB-1616HS-2 Users Guide Conventions used in this users guide Where to find more informationAbout this Users Guide What you will learn from this users guideChapter Overview USB-1616HS-2 featuresSoftware features Introducing the USB-1616HS-2Hardware Installing the USB-1616HS-2TR-2U power supply and CA-1* line cord What comes with your USB-1616HS-2 shipment?CA-96A expansion cable Installing the softwareUnpacking the USB-1616HS-2 Additional documentationInstalling the hardware Information on signal connections Configuring the hardwareConnecting the board for I/O operations Connectors, cables main I/O connectorUSB-1616HS-2 screw terminal pin out single-ended connections Screw terminal pin outsDSUB25 expansion connector pin out DSUB25F expansion connectorCA-96A expansion cable CablingUSB-1616HS-2 components Functional DetailsUSB-1616HS-2 components rear view External power connectorUSB-1616HS-2 functional block diagram USB-1616HS-2 block diagramExample Analog channel scanning of voltage inputs Analog inputAnalog input scanning Settling timeAnalog and digital scanning, once per scan mode example Example Analog and digital scanning, once per scan modeAnalog and digital scanning, once per scan mode example Averaging Tips for making accurate temperature measurementsThermocouple input ShieldingAnalog output Digital outputs and pattern generation Digital I/OTriggering Digital input scanningDigital triggering Hardware analog triggeringSoftware-based triggering Stop trigger modes Counter inputsPre-triggering and post-triggering modes Counter modes Totalize modeTips for making high-speed counter measurements 1 MHz Mapped channelsDebounce modes Trigger before stable mode Trigger after stable modeDebounce module Trigger before stable mode Debounce mode comparisonsOptimal debounce time for trigger before stable mode Encoder modeRepresentation of rotary shaft quadrature encoder Maximizing encoder accuracy Connecting the USB-1616HS-2 to an encoderExample Timer outputs Timer outputsTimer output frequency examples Detection setpoint overview Using multiple USB-1616HS-2s per PCCriteria input signal is equal to Action driven by condition Using the setpoint status register Setpoint configurationExamples of control outputs Detecting on analog input, DAC, and Firstportc updatesAnalog inputs with setpoints update on True and False Detection on an analog input, timer output updatesTimer output update on True and False Using the hysteresis functionDetecting setpoints on a totalizing counter Using multiple inputs to control one DAC outputControlling analog, digital, and timer outputs FIRSTPORTC, DAC, or timer update latencyDetection setpoint details Firstportc Calibrating the USB-1616HS-2 Accuracy SpecificationsAnalog input specifications Analog input accuracy specificationsThermocouple TC types and accuracy Note Analog output specificationsAnalog outputs ThermocouplesDigital input/output Digital input/output specificationsInput sequencer Counter specificationsInput sequencer specifications CountersFrequency/pulse generators Power consumptionFrequency/pulse generator specifications Power consumption specifications NoteEnvironmental External powerUSB specifications Signal I/O connectors and pin outUSB-1616HS-2 screw terminal pin out single-ended connections USB-1616HS-2 screw terminal pin out differential connections USA Declaration of ConformityMailinfo@mccdaq.com