Texas Instruments PGA309EVM-USB manual Evaluation Board/Kit Important Notice, FCC Warning

Page 36

Evaluation Board/Kit Important Notice

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-,marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User’s Guide and, specifically, the Warnings and Restrictions notice in the User’s Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI’s environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM Warnings and Restrictions

It is important to operate this EVM within the input voltage range of 5.7V to 9V and the output voltage range of 0V to 5V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than +50°C. The EVM is designed to operate properly with certain components above +125°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2010, Texas Instruments Incorporated

Image 36
Contents PGA309EVM-USB USB-DAQ-Platform Jumper Settings PGA309EVM-USB Hardware Hardware Included with the INA282-286EVMRelated Documentation from Texas Instruments If You Need AssistanceInformation About Cautions and Warnings PGA309EVM-USB Hardware Setup Theory of Operation for PGA309TestBoard HardwarePGA309TestBoard Connections PGA309TestBoard Schematic Input Circuitry System Setup PGA309TestBoard Schematic Output Circuitry PGA309TestBoard Schematic Sensor Emulator Circuitry PGA309TestBoard Connections to USB-DAQ-Platform and Eeprom PGA309TestBoard Parts List PGA309 Test Board Parts ListJMP1, JMP2, JMP3, JMP4 PGA309TestBoard Signal Definitions and Pinouts 1 J1 25-Pin Male DsubJ1 Pinout 25-Pin Male Dsub 2 J2 25-Pin Female Dsub J2 Pinout 25-Pin Female DsubToPCandPowerSupplies Theory of Operation for USB-DAQ-PlatformElectrostatic Discharge Warning USBDAQPlatformTypical Hardware Connections PGA309EVM-USB Typical Hardware ConnectionsConnecting the Hardware Connecting the Two EVM PCBsConnecting Power Connecting Power to the EVMConnecting the USB Cable to the PGA309EVM-USB Connecting the USB CablePGA309EVM-USB Jumper Settings Default Jumper Settings PGA309TestBoardDefault Jumper Settings USB-DAQ-Platform PGA309TestBoard Jumper Functions GeneralPGA309TestBoard Jumper Functions Miscellaneous Connections PGA309TestBoard Jumper Functions Sensor Emulator SectionUSB-DAQ-Platform Jumper Settings JUMP1 EXTPGA309EVM-USB Software Install Using the PGA309EVM-USB SoftwareOperating Systems for PGA309 Software Starting the PGA309EVM-USB SoftwareRegisters Tab PGA309EVM-USB Software Registers TabEeprom Table Tab PGA309EVM-USB Software Eeprom TabBlock Diagram Tab PGA309EVM-USB Software Block DiagramAuto Calibrate Tab Sensor Definition FunctionsPGA309EVM-USB Software Sensor Emulator Control Panel Tool PGA Setup Functions PGA309EVM-USB Software Auto Calibrate Tab-PGA SetupTwo-Point Calibration and Linearization Functions Temperature Error Compensation Functions Shows the Temperature Error Compensation sub-tabPost Cal Error Check DMM Options PGA309EVM-USB Software Auto Calibrate Tab-DMM OptionsEvaluation Board/Kit Important Notice FCC WarningEVM Warnings and Restrictions Important Notice

PGA309EVM-USB specifications

The Texas Instruments PGA309EVM-USB is an Evaluation Module designed specifically for the PGA309 Precision Analog Front End (AFE) family. This versatile and powerful device serves various applications in the realm of sensor signal conditioning, particularly for pressure sensors, temperature sensors, and other analog sensors requiring high precision.

One of the main features of the PGA309EVM-USB is its high-performance PGA309 device, which incorporates a programmable gain amplifier (PGA) allowing for flexible signal amplification. The PGA309 has a gain range from 1 to 128, enabling it to adapt to a wide array of sensor types and output levels. This flexibility is crucial for achieving optimal performance in diverse applications.

The module also leverages advanced analog and digital processing technologies, which enhance its capabilities. It integrates an onboard microcontroller, allowing users to easily configure settings, execute control algorithms, and manage data acquisition. The built-in USB interface simplifies the communication with a PC, making it straightforward to control the EVM through intuitive software provided by Texas Instruments.

Another significant characteristic of the PGA309EVM-USB is its highly accurate signal conditioning features, such as offset and gain calibration, which ensure minimized errors and improved measurement reliability. The device supports a variety of digital output configurations, including I2C and SPI, to allow easy integration into different system architectures.

In addition to its robust signal processing core, the PGA309EVM-USB is designed with user-friendly interfaces, making it suitable for both experienced engineers and those new to sensor design. The comprehensive software toolkit offers a graphical user interface (GUI) that enables real-time monitoring and adjustment of parameters, ensuring users can optimize their applications.

Furthermore, the device is designed for functionality in harsh environments, incorporating features to withstand temperature variations and electrical noise. This reliability adds value for applications in industrial automation, automotive systems, and medical devices.

In summary, the Texas Instruments PGA309EVM-USB stands out as a powerful tool for engineers looking to design and prototype high-precision sensor signal conditioning applications. With its programmable gain amplifier, advanced processing capabilities, and user-friendly interfaces, it represents a significant advancement in the field of analog signal processing, allowing for greater flexibility and accuracy in diverse applications.