Siemens SINVERT 350 manual Conexión

Page 11

Manejo del hardware

3.1 Puesta en marcha del inversor

3.1.3Conexión

La conexión se realiza del mismo modo que la desconexión, pero en el orden inverso.

1.Asegúrese de haber comprobado si todas las conexiones están correctamente establecidas (incluida la polaridad).

2.Conecte las cajas de conexión en el campo FV.

3.Conecte la alimentación externa para las celdas de media tensión.

4.Conecte la alimentación externa para el contenedor del inversor.

5.Accione el interruptor de media tensión.

oAbra el seccionador de tierra.

oCierre el interruptor-seccionador. o Cierre el interruptor automático.

oNota: Dependiendo de la ejecución de las celdas de media tensión, estos pasos pueden diferir.

6.Cierre el interruptor-seccionador fusible DC en todos los inversores.

7.Cierre el interruptor-seccionador fusible AC en todos los inversores.

8.Desbloquee el pulsador de parada rápida.

9.Gire el interruptor de llave en todos los inversores de la posición "Auto" a "Test" y de nuevo a "Auto", a fin de resetear los ajustes.

10.Si hay suficiente irrradiación, la planta se reiniciará automáticamente pasados 30 minutos.

11.Para un inicio inmediato, el interruptor de llave del maestro debe encontrarse en la posición "Test". A continuación, pulse la tecla interna "S111".

12.Los contactores de continua se cerrarán sucesivamente de forma automática. A continuación se arrancará el inversor, y el contactor de alterna se cerrará inmediatamente. Pase ahora el interruptor de llave a la posición "Auto".

11

Image 11
Contents Sinvert Unidad fotovoltaica Marcas Consignas de seguridadPersonal cualificado Uso reglamentarioÍndice de contenidos Figuras Tablas1 Ámbito de validez IntroducciónSobre esta documentación Historial DestinatariosEstructura de las instrucciones Capítulo ContenidoCampo de aplicación DescripciónLas cinco reglas de seguridad en Alemania Manejo del hardwarePuesta en marcha del inversor Instrucciones y consignas de seguridadDesconexión y aislamiento de la alimentación Conexión Panel de mando Funcionamiento del inversorPin Señal Selector Local/Remote local/remoto Modo de operaciónConexión y desconexión del inversor Adaptación de la tensión Reseteo de fallosIndicación de alarmas y fallos actuales Fallo/alarma de aislamiento LED ISO FaultEstado de red LED Line OK Maximum Power Point LED MPPModo Standby LED Standby Modo automático/modo de testPPsolar Comunicación con el inversor1 WEB’log WinCCRojo Fallo de funcionamiento de los componentes del sistema Figura 3-6 Panel de mando de PPsolar Figura 3-7 Función de osciloscopio de PPsolar Ajustes de Sinvert Información del dispositivoValores reales Resumen de valores realesInterfaz de red Ccondiciones meteorológicasGenerador FV Figura 3-9 Almacenamiento de datos de PPsolar EnergíaFigura 3-10 Ventana de análisis de PPsolar Indicación/avisos de fallo Avisos de alarma y falloTratamiento de errores Tipos de falloCausa principal Avisos de alarma y falloSignificado Categoría LED Diferencia de tensiones en campo FV Fallos causas/diagnóstico/solucionesSoluciones CausasDiagnóstico La captación de medidas es errónea CondiciónLa generación de calor es superior a la diseñada Causas Corriente demasiado elevada Causas Temperatura de entrada demasiado altaFalta señal de respuesta del contactor de alterna Causas Falta alimentación para desconexión rápidaCausas Falta tensión de red para la desconexión rápida Causas La tensión continua medida es demasiado altaTabla 4-13 Fallo Alarma Ha respondido la vigilancia Uce La CU/S7 detecta una corriente continua que supera el Tabla 4-19 Fallo Alarma Se ha disparado un fusible Medidas PosiblesTabla 4-24 Fallo Alarma Tensión de red fuera de tolerancia Alarma sin fallo Direcciones de contacto SoporteAlemania
Related manuals
Manual 42 pages 43.39 Kb

SINVERT 350 specifications

The Siemens SINVERT 350 series is a high-performance, lightweight inverter system designed to optimize energy conversion in solar power applications. With a power rating of up to 350 kW, this inverter model is tailored for large-scale photovoltaic installations and commercial applications. Its key features and technological innovations make it a valuable addition to any renewable energy project.

One of the main features of the SINVERT 350 is its advanced grid management capability. The inverter is equipped with sophisticated monitoring systems that ensure compliance with various grid connection standards, enhancing stability and reliability for the operator. This ensures seamless integration with existing power grids while optimizing energy yield. Additionally, it supports various grid support functionalities, helping maintain grid stability during high-demand periods.

Another notable characteristic is its modular design. The SINVERT 350 allows for easy integration with other units, scaling effectively to meet the power needs of larger installations. This modularity not only enhances flexibility but also simplifies maintenance and reduces operational costs over time. Each unit can be easily accessed, which minimizes downtime during servicing.

The SINVERT 350 also features advanced cooling technology. With its robust thermal management system, the inverter operates efficiently even under high temperatures, ensuring longevity and reliability. The design minimizes losses due to heat, effectively enhancing the overall energy conversion efficiency.

In terms of safety, the SINVERT 350 is built with integrated protection mechanisms, including over-voltage and short-circuit protections. These safety features safeguard both the inverter and the connected photovoltaic modules, ensuring a secure operating environment.

Another highlight is the inverter’s compatibility with the Siemens Smart Grid solutions. This integration means users can access comprehensive monitoring and analytics tools, enabling real-time performance tracking and optimization of energy output. With built-in web-based connectivity, operators can manage the system remotely, gaining insights and facilitating proactive maintenance.

In conclusion, the Siemens SINVERT 350 series combines robust performance, innovative technologies, and reliable safety features to create a compelling choice for large-scale solar energy projects. Its advanced design ensures operational efficiency and adaptability, thereby enhancing the overall viability of solar energy as a sustainable power source.