Ericsson LBI-39128 manual Contents

Page 2

LBI-39128

CONTENTS

TABLE OF CONTENTS

 

 

Page

INTRODUCTION

6

DESCRIPTION

6

APPLICATION NOTES

7

VAX SITE CONTROLLER COMPUTER

7

APPLICATION SOFTWARE PROMS

7

PERSONALITY PROMS

7

INSTALLATION

8

SITE CONTROLLER HARDWARE

8

SITE CONTROLLER SOFTWARE

8

Application Software PROMs

9

Personality PROMs

9

PMU HARDWARE

9

A. Addition from No PMU

9

B. Upgrade from Old PMU

12

C. Adaptation from Old PMU

13

INITIAL POWER-UP

14

PMU PROGRAMMING

15

Terminal Setup

15

Software Initialization

15

Time/Date/Password

17

Antenna Mapping

18

POWER SENSOR CALIBRATION

19

Unidirectional Power Sensors

19

Bi-directional Power Sensors

20

FINAL CHECK

21

(Continued)

 

NOTICE

This Manual covers Ericsson and General Electric products manufactured and sold by Ericsson Inc.

NOTICE

Repairs to this equipment should be made only by an authorized service technician or facility designated by the supplier. Any repairs, alterations or substitution of recommended parts made by the user to this equipment not approved by the manufacturer could void the user’s authority to operate the equipment in addition to the manufacturer’s warranty.

NOTICE!

The software contained in this device is copyrighted by Ericsson Inc. Unpublished rights are reserved under the copyright laws of the United States.

This manual is published by Ericsson Inc., without any warranty. Improvements and changes to this manual necessitated by typographical errors, inaccuracies of current information, or improvements to programs and/or equipment, may be made by Ericsson Inc., at any time and without notice. Such changes will be incorporated into new editions of this manual. No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of Ericsson Inc.

Copyright© March 1995, Ericsson Inc.

2

Image 2
Contents Installation & Operation Contents Table of Contents Figures and Tables List of Figures and TablesSpecifications SpecificationsLBI-39128 Personality Proms VAX Site Controller ComputerApplication Software Proms Site Controller Hardware Site Controller SoftwarePersonality PROMs PMU HardwareApplication Software PROMs Addition from No PMUProcedure Parts RequiredDB-9 M DB-9 F Upgrade from Old PMU Trunking CardAdaptation from Old PMU Initial POWER-UP Software Initialization Terminal SetupPMU Programming Sentry PMU REV 8.6 12/07/94 Time/Date/Password Antenna Mapping Power Sensor Calibration Unidirectional Power SensorsBi-directional Power Sensors Final Check Startup MonitorSWR Calculations AlarmsPower Measurements Antenna Alarms Alarm ReportingTransmitter Alarms Excessive AlarmsParameters Channel PMU EnableSite PMU Enable PMU ModelOperation Antenna Lower Alarm Limit Transmitter Lower Alarm LimitTransmitter Upper Alarm Limit Antenna Upper Alarm LimitAlarm Limits As Installed Alarm Limit RE-CONFIGURATIONTransmitter Power Alarm Limits Antenna Power Alarm LimitsAntenna SWR Alarm Limit Alarm History Report Screen Time and Date AdjustmentDiagnostic Screens Channel Monitor ScreenAlarm History Report Site not Programmed Time Software Updates Erase ALL ProgrammingAlarm Delay Adjustment Troubleshooting Symptom Possible Causes Corrective ActionMaintenance Glossary GlossaryInterconnection Diagram PMU Interconnection Diagram Edacs Site Controller Cabinet

LBI-39128 specifications

Ericsson LBI-39128 is a comprehensive communication solution designed to meet the ever-evolving demands of modern telecommunications. It is renowned for its ability to enhance network performance while providing a robust framework for various communication technologies. This product primarily targets service providers, enabling them to maximize their operational efficiency and improve service delivery.

One of the key features of the LBI-39128 is its versatility in supporting multiple generation technologies, including 2G, 3G, LTE, and even 5G. This ensures that service providers can seamlessly integrate their existing infrastructure and gradually evolve towards more advanced network capabilities without the need for a complete overhaul. The product caters to a wide array of deployment scenarios, from urban environments with high user density to rural areas requiring expansive coverage.

In terms of network performance, the LBI-39128 excels with its advanced radio technologies. It employs Massive MIMO (Multiple Input Multiple Output) and beamforming techniques, which significantly enhance spectral efficiency and improve user experience. With multiple antennas transmitting and receiving signals simultaneously, users benefit from increased throughput and reduced latency, essential for applications such as video streaming and real-time communications.

Another critical characteristic of the Ericsson LBI-39128 is its focus on energy efficiency. The product integrates intelligent power management systems that optimize energy consumption, thereby reducing operational costs for service providers. This aligns with the growing emphasis on sustainable practices within the telecommunications industry.

Moreover, the LBI-39128 features advanced management and automation capabilities. Its network function virtualization (NFV) support enables operators to deploy virtualized network functions efficiently, allowing for dynamic scaling and resource allocation based on real-time demand. This agility is crucial for handling varying loads and enhancing the overall resilience of the network.

Security is also a primary consideration in the design of the LBI-39128. It incorporates robust encryption methods and secure access protocols to protect sensitive data and ensure the integrity of communication channels. This is particularly important in an age where cyber threats are becoming increasingly prevalent.

In summary, the Ericsson LBI-39128 is a state-of-the-art telecommunications solution that stands out due to its support for multiple technologies, advanced radio capabilities, energy efficiency, automated management, and robust security features. Its design reflects the needs of contemporary service providers, allowing them to build and sustain high-performance networks that meet the demands of future communications.