A Obtaining the Determinant of a MatrixThe det( function can be used to obtain the determinant of a square matrix.
det

 

a11

= a11

 

det

 

a11

a12

 

= a11a22 a12a21

 

 

 

a21

a22

 

 

 

a11 a12 a13

 

 

 

 

det

 

a21

a22

 

a23

= a11a22a33 + a12a23a31 + a13a21a32 a13a22a31 a12a21a33 a11a23a32

 

 

a31

a32

 

a33

 

Example: To obtain the determinant of the matrix 15 –20 .This example assumes that Mat C contains 15 –20 .z– {MATRIX}3(det) Mat C)

E

A Transposing a Matrix

Transposing a matrix basically means to change its rows in to columns and its columns into rows. Calculation is performed using the Trn( function as shown below.

Example: To transpose the matrix 1 2 3 . 4 5 6

This example assumes that Mat B contains 1 2 3 . 4 5 6

z – {MATRIX}4(Trn) Mat B)

E

A Inverting a MatrixYou can use the procedure shown below to invert a square matrix.

a11

 

–1

=

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a11

 

 

 

a22

a12

 

 

a11

 

a12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–1

 

 

 

a21

a11

 

 

 

 

 

 

a21

 

a22

 

=

 

 

 

 

a

11a22 a12a21

E-64