ENGLISH
EL-W535
CALCULATION EXAMPLES
ANWENDUNGSBEISPIELE
EXEMPLES DE CALCUL
EJEMPLOS DE CçLCULO
EXEMPLOS DE CçLCULO
ESEMPI DI CALCOLO
REKENVOORBEELDEN
PƒLDASZçMêTçSOK
PŘÍKLADY VÝPOČTŮ
R€KNEEXEMPEL
LASKENTAESIMERKKEJ€
UDREGNINGSEKSEMPLER
CONTOH-CONTOH PERHITUNGAN
1 | U |
|
|
|
|
|
|
|
|
2 | 3 | j2 W5 r |
|
|
⎯ + ⎯ = |
|
|
| |
5 | 4 | +W3 r4 |
| 3 |
|
| = | 1 | ⎯ |
|
| 20 | ||
|
| U |
| ⎯ |
|
|
|
| 23 |
|
|
|
| 20 |
|
| U | 1.15 | |
|
|
|
| ⎯ |
|
| U | 1 | 3 |
|
| 20 |
P3 ⋅ P5 = *3 rk*5
=H15
U3.872983346
P2 ⎟ 3 + P5 ⎟ 5 = *2 rz3 + | Q Q |
*5 rz5 = | 3 5+5 2 |
⎯ | |
| 15 |
U0.918618116
⎯Q
sin 45 =v45 = 2 2
U0.707106781
2cos−1 0.5 [rad] = J01 | 2 |
2 @^0.5 = | ⎯J |
| 3 |
U2.094395102
2ud
@Z | 0. |
① 3(5 + 2) = 3 (5 +2 )= | 21. |
② 3 ⋅ 5 + 2 = 3 k5 +2 = | 17. |
③ (5 + 3) ⋅ 2 = (5 +3)k2 = 16.
→ ① | @u | 21. |
→ ② | d | 17. |
→ ③ | d | 16. |
→ ② | u | 17. |
|
|
|
3 J |
|
|
|
|
|
o |
|
|
100000 ⎟ 3 = |
|
|
[NORM1] | j100000 z3 | 33'333.33333 |
| = | |
→ [FIX: TAB 2] | J102 | 33'333.33 |
→ [SCI: SIG 2] | J112 | 3.3b04 |
→ [ENG: TAB 2] | J122 | 33.33b03 |
→ [NORM1] | J13 | 33'333.33333 |
|
|
|
o
3 ⎟ 1000 =
[NORM1] | j3 z1000 = | 0.003 |
→ [NORM2] | J14 | |
→ [NORM1] | J13 | 0.003 |
|
|
|
4+&kz()S`
45 | + 285 ⎟ 3 = | j45 +285 z3 | 140. | |
|
| = | ||
18 | + 6 | (18 +6 )z | 3 | |
⎯ = | (15 &8 = | ⎯ | ||
15 | − 8 | 3 7 | ||
42 | ⋅ −5 + 120 = | 42 kS5 +120 |
| |
= | ||||
(5 ⋅ 103) ⎟ (4 ⋅ 10−3) = 5 `3 z4 |
| |||
|
| `S3 = 1'250'000. | ||
5 |
|
|
|
|
|
|
|
|
|
34 | + 57 = | 34 | +57 = | 91. |
45 | + 57 = | 45 | = | 102. |
|
|
|
| |
68 | × 25 = | 68 k25 = | 1'700. | |
68 | × 40 = | 40 | = | 2'720. |
|
|
|
|
|
6v$tw^ysH> ilO"VYZA1 *mDqBecaW H
| @P0 |
| 0. |
|
|
| Q |
sin 60 [°] = | jv60 = |
| 3 |
| ⎯ | ||
|
|
| 2 |
| U | 0.866025403 | |
|
|
|
|
π |
|
| Q |
cos ⎯ [rad] = | J01 |
| |
| ⎯2 | ||
4 | $sW4 = | 2 | |
| U | 0.707106781 | |
|
|
|
|
tan−11 [g] = | J02 |
|
|
| @y1 = |
| 50. |
| J00 |
|
|
|
|
| |
(cosh1.5 + sinh1.5)2 = j(H$ |
|
| |
| 1.5 +Hv |
|
|
| 1.5 )A= 20.08553692 | ||
tanh−1 ⎯5 = | @>t( |
|
|
7 | 5 z7 )= 0.895879734 | ||
ln 20 = | i20 = | 2.995732274 | |
|
|
| |
log 50 = | l50 = | 1.698970004 | |
|
| ||
log2 16384 = | @O2 r16384 = 14. |
o@O2 H16384 )
= 14.
e3 = |
| @"3 = 20.08553692 | |
|
|
| |
1 ⎟ e = | 1 z;V |
| |
|
| = | 0.367879441 |
|
| ||
101.7 = | @Y1.7 = 50.11872336 | ||
|
|
|
|
1 | 1 | 6 @Z+7 | 13 |
⎯ + ⎯ = | |||
6 | 7 | @Z= | ⎯ |
42 | |||
|
| U | 0.309523809 |
|
|
| |
8−2 − 34 ⋅ 52 = | 8 mS2 r |
| |
|
| &3 m4 r | 63 |
|
| k5 A= | |
|
| U | 129599 |
|
| - ⎯ | |
|
|
| 64 |
U
o8 mS2 &
3 m4 k5
A=
U
U
| 3 |
| 1 |
| (12 m3 |
|
(12 | ⎯ | = |
| |||
| ) | 4 | r)m |
| ||
|
|
|
|
|
| |
|
|
|
|
| 1 W4 = | 6.447419591 |
o |
|
| (12 m3 ) |
| ||
|
|
|
|
| m1 W4 = 6.447419591 | |
|
|
|
|
| ||
83 = |
|
| 8 @1= | 512. | ||
|
|
|
| |||
p49 − | 4p81 = | *49 r& | 4. | |||
|
|
|
|
| 4 @D81 = |
o*49 &4
| @D81 = | 4. | |
|
|
| |
3p27 = | @q27 = | 3. | |
|
|
| |
4! = | 4 @B= | 24. | |
|
|
| |
10P3 = | 10 @e3 = | 720. | |
|
|
| |
5C2 = | 5 @c2 = | 10. | |
|
|
|
|
500 ⋅ 25% = | 500 k25 | @a | 125. |
|
|
| |
120 ⎟ 400 = ?% | 120 z400 @a | 30. | |
|
|
| |
500 + (500 ⋅ 25%) = 500 +25 | @a | 625. | |
|
|
| |
400 − (400 ⋅ 30%) = 400 &30 | @a | 280. | |
|
| ||
5 − 9 = | @W5 &9 = 4. |
o@W(5 &9 4. )=
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
|
| θ = sin−1 x, θ = tan−1 x | θ = cos−1 x |
| |
| DEG | −90 ≤ θ ≤ 90 | 0 ≤ θ ≤ 180 | ||
|
|
|
|
|
|
| RAD | π | π | 0 ≤ θ ≤ π | |
| − ⎯ ≤ θ ≤ ⎯ | ||||
|
| 2 | 2 |
|
|
| GRAD | −100 ≤ θ ≤ 100 | 0 ≤ θ ≤ 200 | ||
|
|
|
|
|
|
7 ] |
|
|
|
| |
|
|
|
|
|
|
90° → [rad] | j90 @] | 1 |
| ||
⎯ J | |||||
|
|
|
| 2 |
|
→ [g] | @] |
| 100. | ||
→ [°] | @] |
| 90. | ||
|
|
| |||
sin−1 0.8 = [°] | @w0.8 = | 53.13010235 | |||
→ [rad] | @] |
| 0.927295218 | ||
→ [g] | @] |
| 59.03344706 | ||
→ [°] | @] |
| 53.13010235 | ||
|
|
|
|
|
|
8;txmM<IJK L
8 ⋅ 2 ⇒ M | j8 k2 xM 16. | |
|
| ⎯ |
24 ⎟ (8 × 2) = |
| 1 |
24 z;M= | 1 2 | |
(8 × 2) × 5 = | ;Mk5 = 80. | |
|
|
|