Data Sheet: SuperetaTM iQM Series –Single Output Quarter Brick

Thermal Management:

An important part of the overall system design process is thermal management; thermal design must be considered at all levels to ensure good reliability and lifetime of the final system. Superior thermal design and the ability to operate in severe application environments are key elements of a robust, reliable power module.

A finite amount of heat must be dissipated from the power module to the surrounding environment. This heat is transferred by the

The cross section of the airflow passage is rectangular with the spacing between the top of the module and a parallel facing PCB kept at a constant (0.5 in). The power module’s orientation with respect to the airflow direction can have a significant impact on the unit’s thermal performance.

Thermal Derating: For proper application of the power module in a given thermal environment, output current derating curves are provided as a design guideline in the

three modes of heat transfer: convection, conduction and radiation. While all three modes of heat transfer are present in every application, convection is the dominant mode of heat transfer in most applications. However, to ensure adequate cooling and proper operation, all three modes should be considered in a final system configuration.

The open frame design of the power module provides an air path to individual components. This air path improves convection cooling to the surrounding environment, which reduces areas of heat concentration and resulting hot spots.

Test Setup: The thermal performance data of the power module is based upon measurements obtained from a wind tunnel test with the setup shown in the wind tunnel figure. This thermal test setup replicates the typical thermal environments encountered in most modern electronic systems with distributed power architectures. The electronic equipment in networking, telecom,

Module

Centerline

76 (3.0)

AIRFLOW

Air Velocity and Ambient

Temperature

Measurement Location

Adjacent PCB

A

 

 

12.7

 

 

I

 

 

(0.50)

R

 

 

 

 

 

F

 

 

 

L

 

 

 

O

 

 

 

W

 

 

 

 

 

 

 

 

 

 

 

Air Passage

Centerline

wireless, and advanced computer systems operates in similar environments and utilizes vertically mounted printed circuit boards (PCBs) or circuit cards in cabinet racks.

The power module is mounted on a 0.062 inch thick, 6 layer, 2oz/layer PCB and is vertically oriented within the wind tunnel. Power is routed on the internal layers of the PCB. The outer copper layers are thermally decoupled from the converter to better simulate the customer’s application. This also results in a more conservative derating.

Wind Tunnel Test Setup Figure

Dimensions are in millimeters and (inches).

Thermal Performance section for the power module of interest. The module temperature should be measured in the final system configuration to ensure proper thermal management of the power module. For thermal performance verification, the module temperature should be measured at the component indicated in the thermal measurement location figure on the thermal

©2004-2006 TDK Innoveta Inc.

(877) 498-0099

9/15

iQM 1.5V/70A Datasheet 8/4/2006

 

Page 9
Image 9
TDK iQM Series manual Thermal Management, Wind Tunnel Test Setup Figure

iQM Series specifications

The TDK iQM Series represents a significant advancement in the realm of power inductors, catering specifically to applications that demand high efficiency and reliability. Designed for use in a variety of devices, including smartphones, tablets, and power supply systems, the iQM Series is tailored to meet the rigorous demands of modern electronics.

One of the standout features of the iQM Series is its compact size. The inductors are designed to maximize performance while minimizing space, making them ideal for applications where every millimeter counts. This compact design is achieved without compromising on performance, offering high inductance values that are essential for stable operation in power conversion circuits.

TDK has integrated innovative materials in the iQM inductors, utilizing a composite magnetic core that enhances energy efficiency and thermal performance. This ensures that the inductors operate effectively even at higher currents, reducing losses associated with heat generation. As a result, the iQM Series boasts a low DC resistance, contributing to improved overall system efficiency and enabling reliable operation in demanding environments.

Another notable characteristic of the iQM Series is its broad range of inductance values, which allows designers to select the most suitable inductor for their specific application requirements. This adaptability, combined with a wide operating temperature range, enables the iQM inductors to function efficiently in various climatic conditions and across different electronic devices.

Furthermore, the iQM Series is designed with a focus on minimizing noise. Advanced construction techniques have been employed to reduce electromagnetic interference, which is crucial for maintaining signal integrity in high-frequency applications. This makes the iQM Series particularly well-suited for power management circuits used in applications like DC-DC converters and power supply solutions.

The iQM Series also boasts impressive saturation current ratings, allowing for reliable performance even in peak current scenarios. This feature is essential for applications where transient loads can cause inductors to experience higher than normal currents. The ability to handle such conditions without saturating ensures longer device life and better performance under stress.

In summary, the TDK iQM Series of power inductors stands out due to its compact design, high efficiency, versatile inductance values, and effective noise reduction features. These qualities make iQM inductors an excellent choice for engineers looking to enhance their power management circuits in today's technologically advanced devices. With TDK's commitment to innovation and quality, the iQM Series is set to play a vital role in the future of electronics.