Resets the TIM counter

Prescales the TIM counter clock

Address:

Read:

Write:

Reset:

$0010

 

 

 

 

 

 

 

Bit 7

6

5

4

3

2

1

Bit 0

 

 

 

 

 

 

 

 

TOF

TOIE

TSTOP

0

0

PS2

PS1

PS0

 

 

 

0

TRST

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

0

0

0

0

0

 

= Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11-3. TIM Status and Control Register (TSC)

TOF — TIM Overflow Flag Bit

This read/write flag is set when the TIM counter resets to $0000 after reaching the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic zero to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic zero to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic one to TOF has no effect.

1 = TIM counter has reached modulo value

0 = TIM counter has not reached modulo value

TOIE — TIM Overflow Interrupt Enable Bit

This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit.

1 = TIM overflow interrupts enabled

0 = TIM overflow interrupts disabled

TSTOP — TIM Stop Bit

This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit.

1 = TIM counter stopped

0 = TIM counter active

Advance Information

MC68HC(7)08KH12 Rev. 1.1

 

 

174

Freescale Semiconductor

Page 174
Image 174
Freescale Semiconductor MC68HC08KH12 manual Resets the TIM counter Prescales the TIM counter clock, 174

MC68HC08KH12 specifications

The Freescale Semiconductor MC68HC08KH12 is a versatile microcontroller that has gained popularity in various embedded systems applications. Part of the HC08 family, this microcontroller combines a robust architecture with comprehensive on-chip features, making it suitable for a wide range of applications ranging from industrial control to consumer electronics.

One of the main features of the MC68HC08KH12 is its 8-bit architecture, which provides an optimal balance between performance and power efficiency. It operates at clock speeds of up to 2 MHz, allowing for efficient execution of instructions while maintaining low power consumption. The microcontroller is designed to operate over a voltage range of 2.7 to 5.5 volts, making it adaptable to various system requirements.

The MC68HC08KH12 is equipped with 1 Kbyte of RAM and 12 Kbytes of ROM, which allows for substantial program and data storage. The on-chip memory helps reduce the need for external components, simplifying the design of embedded systems and enhancing reliability. With a wide range of I/O options, including 26 general-purpose I/O pins, the microcontroller provides flexibility in interfacing with sensors, actuators, and other devices.

In terms of technologies, the MC68HC08KH12 features an advanced instruction set that enhances programming efficiency. It supports basic arithmetic operations, bit manipulation, and control transfer instructions, making it suitable for a variety of computational tasks. The integrated timers, analog-to-digital converters, and serial communication interfaces, including UART, provide the necessary tools for real-time control and data exchange with peripheral devices.

Another characteristic of the MC68HC08KH12 is its low power mode capabilities, which allow it to enter a sleep state during periods of inactivity. This feature is essential in battery-powered applications, where minimizing power consumption is crucial for extending operational life.

Overall, the Freescale Semiconductor MC68HC08KH12 stands out as a reliable microcontroller that combines performance, flexibility, and power efficiency. Its extensive features and technologies enable engineers to design robust embedded systems that meet the demands of modern applications. As a result, the MC68HC08KH12 remains a valuable choice for developers seeking a highly functional yet cost-effective microcontroller solution.