Sharp EL-506W, EL-546W manual M2-VLE, M3-VLE, MQUAD, Cubic, Mmat, Mlist, Mcplx

Page 7

x – x

Standardization conversion formula

t = ––––

σx

Standard Umrechnungsformel

 

 

Formule de conversion de standardisation

 

Fórmula de conversión de estandarización

 

Fórmula de conversão padronizada

 

Formula di conversione della standardizzazione

 

Standaardisering omzettingsformule

 

Standard átváltási képlet

 

Vzorec pro přepočet rozdělení

 

Omvandlingsformel för standardisering

 

Normituksen konversiokaava

 

îÓÏÛ· Òڇ̉‡ÚËÁÓ‚‡ÌÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl

 

Omregningsformel for standardisering

Rumus penukaran pemiawaian

Rumus konversi standarisasi

Coâng thöùc bieán ñoåi chuaån hoùa

m(2-VLE)

 

 

a1x + b1y = c1

 

 

D

 

=

a1 b1

 

 

 

 

 

 

 

 

 

a2x + b2y = c2

 

 

 

 

 

a2

b2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2x + 3y = 4

m20

 

 

2 ®3 ®4 ®

 

 

 

 

 

 

 

 

 

 

5x + 6y = 7

5 ®6 ®7

 

 

 

 

 

x = ?

®[x]

 

–1.

y = ?

®[y]

2.

det(D) = ?

®[det(D)]

 

–3.

 

 

 

 

 

 

 

 

 

 

 

m(3-VLE)

 

 

a1x + b1y + c1z = d1

 

 

 

a1 b1 c1

 

 

 

 

 

 

 

 

 

a2x + b2y + c2z = d2

 

D

=

a2 b2 c2

 

 

 

a3x + b3y + c3z = d3

 

 

 

a3 b3 c3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m21

x + y z = 9 1 ®1 ®1 ±®9 ®

6x + 6y z = 17 6 ®6 ®1 ±®17 ® 14x – 7y + 2z = 42 14 ®7 ±®2 ®42

x = ?

®[x]

3.238095238

y = ?

®[y]

–1.638095238

z = ?

®[z]

–7.4

det(D) = ?

®[det(D)]

105.

 

 

 

m(QUAD, CUBIC)

 

m22

 

3x2 + 4x – 95 = 0 3 ®4 ®±95

 

x1 = ?

®

5.

x2 = ?

®

–6.333333333

 

5.

 

 

 

 

m23

 

5x3 + 4x2 + 3x + 7 = 0 5 ®4 ®3 ®7

 

x1 = ?

®

–1.233600307

x2 = ?

®

0.216800153

y

• • • •

@{8 Ö70 +12

Ö25

 

 

A

 

 

 

 

=[r]

18.5408873

r1

r

 

 

@≠[θ]

42.76427608

 

θ

B

θ1

θ2

r2

 

 

 

x

 

 

 

 

 

 

r1 = 8, θ1 = 70° r2 = 12, θ2 = 25°

r = ?, θ = ?°

(1 + i)

@}1 +Ü=

1.

@{[r]

1.414213562

r = ?, θ = ?°

@≠[θ]

45.

 

@}(2 -3Ü)L

(2 – 3i)2 =

=[x]

–5.

 

@≠[y]

12. i

1

(1 +Ü)@•=[x] 0.5

—— =

@≠[y]

0.5 i

1 + i

CONJ(5+2i) =

∑0(5 +2 Ü)=[x] 5.

 

@≠[y]

2. i

m(MAT)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m4

 

 

1 2

 

 

matA

 

 

 

 

 

 

 

 

 

 

 

 

]2 k2 k1 k2 k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 k4 k

 

 

3 1

 

 

matB

 

 

 

 

 

 

 

 

 

 

 

 

ª∑20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

]2 k2 k

 

 

2 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 k1 k2 k6 k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ª∑21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

matA matB =

 

 

7

 

 

13

 

 

 

 

ª∑00*∑01=

 

 

17 27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

matA–1=

 

–2

1

 

 

 

 

 

 

 

 

 

 

ª∑00@•=

 

1.5 –0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 0

 

 

 

ª∑30∑00

dim(matA,3,3) =

3 4 0

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0

 

 

 

@,3 @,3 )=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 5 5

 

 

 

 

 

 

 

 

 

 

ª∑315 @,

fill(5,3,3) =

5 5 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 @,3 )=

 

 

 

 

 

 

 

 

5 5 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cumul matA =

 

1 2

 

 

 

 

 

 

 

 

ª∑32∑00=

 

4 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aug(matA,matB) =

 

 

1 2 3 1

 

ª∑33∑00

 

 

3 4 2 6

 

@,∑01)=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0

 

 

 

 

 

 

 

 

 

identity 3 =

0 1 0

 

 

 

 

 

 

 

 

ª∑343 =

 

 

 

 

 

0 0 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rnd_mat(2,3)

 

 

 

 

 

 

 

 

 

 

 

 

ª∑352 @,3 )=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

det matA = –2

 

 

 

 

 

 

 

 

 

 

 

 

ª∑40∑00=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trans matB =

3 2

 

 

 

 

 

 

 

 

ª∑41∑01=

1 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L1: {1 3}

 

mat list L2: {3 2}

ª∑5

m(LIST)

 

m5

2, 7, 4 L1

]3 k2 k7 k4 k

–3, –1, –4 L2

ª∑20

]3 k

 

±3 1 4 k ª∑21

L1+L2 = {–1 6 0}ª∑00+∑01=

sortA L1 = {2 4 7}ª∑30∑00=

sortD L1 = {7 4 2}ª∑31∑00=

• • • •

stdDv L1 = 2.516611478 ª∑46∑00=

vari L1 = 6.333333333 ª∑47∑00=

o_prod(L1,L2) = {–24 –4 19} ª∑48∑00 @,∑01)=

i_prod(L1,L2) = –29 ª∑49∑00 @,∑01)=

abs L2 = 5.099019514 ª∑4A∑01=

 

 

2 –3

 

 

 

 

 

 

 

list matA matA:

 

7 –1

 

 

ª∑6

 

 

4 –4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function

 

 

 

 

 

Dynamic range

Funktion

 

 

 

 

 

zulässiger Bereich

Fonction

 

 

 

 

 

Plage dynamique

Función

 

 

 

 

 

Rango dinámico

Função

 

 

 

 

 

Gama dinâmica

Funzioni

 

 

 

 

 

Campi dinamici

Functie

 

 

 

 

 

Rekencapaciteit

Függvény

 

 

 

Megengedett számítási tartomány

Funkce

 

 

 

 

 

Dynamický rozsah

Funktion

 

 

 

 

 

Definitionsområde

Funktio

 

 

 

 

 

Dynaaminen ala

îÛÌ͈Ëfl

 

 

 

 

 

ÑË̇Ï˘ÂÒÍËÈ ‰Ë‡Ô‡ÁÓÌ

Funktion

 

 

 

 

 

Dynamikområde

Fungsi

 

 

 

 

 

Julat dinamik

Fungsi

 

 

 

 

 

Kisaran dinamis

Haøm soá

 

 

 

 

 

Giôùi haïn Ñoäng

 

 

DEG:

x < 1010

 

 

 

 

 

 

 

 

 

(tan x : x 90 (2n–1))*

sin x, cos x,

 

RAD:

 

π

1010

 

x < —–

tan x

 

 

 

 

 

180

 

π

 

 

 

 

 

(tan x : x (2n–1))*

 

 

 

 

 

 

10

2

 

 

 

 

 

 

 

10

 

 

 

GRAD: x < —–

10

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

(tan x : x 100 (2n–1))*

sin–1x,cos–1x

 

x 1

 

 

 

 

 

tan–1x, 3¿x

 

x < 10100

 

 

 

In x, log x

 

10–99x < 10100

 

 

 

 

 

y > 0: –10100< x log y < 100

yx

 

y = 0:

0 < x < 10100

 

y < 0: x = n

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0 < l x l < 1: — = 2n–1, x 0)*,

 

 

 

 

 

 

 

 

x

 

 

 

 

 

–10100< x log y < 100

 

 

 

 

 

 

1

 

 

 

 

y > 0: –10100< — log y < 100 (x 0)

 

 

 

 

 

 

x

 

 

 

 

 

y = 0:

0 < x < 10100

x¿y

 

y < 0: x = 2n–1

 

1

 

 

 

 

 

 

(0 < x < 1 : — = n, x 0)*,

 

 

 

 

 

 

1

x

 

 

 

 

 

–10100< — log y < 100

 

 

 

 

 

 

x

 

 

 

ex

 

–10100< x 230.2585092

10x

 

–10100< x < 100

 

 

 

sinh x, cosh x,

 

x 230.2585092

 

 

 

tanh x

 

 

 

 

 

 

 

 

 

 

 

 

 

sinh–1x

 

x < 1050

 

 

 

cosh–1x

 

1 x < 1050

 

 

 

tanh–1x

 

x < 1

 

 

 

 

 

x2

 

x < 1050

 

 

 

x3

 

x < 2.15443469 1033

 

¿x

 

0 x < 10100

 

 

 

x–1

 

x < 10100 (x 0)

 

 

 

n!

 

0 n 69*

 

 

 

nPr

 

0 r n 9999999999*

 

n!

 

100

 

 

 

 

 

—— < 10

 

 

 

 

 

 

(n-r)!

 

 

 

 

 

 

 

0 r n 9999999999*

 

@≠

+ 1.043018296 i

x3 = ?

®

0.216800153

dim(L1,5) = {2 7 4 0 0}

ª∑32∑00 @,5 )=

nCr

0 r 69

n!

 

 

—— < 10100

 

(n-r)!

@≠

1.043018296 i

m(CPLX)

m3

(12–6i) + (7+15i) – 12 -6 Ü+7 +15 Ü-

(11+4i) =

(11 +4 Ü)=[x] 8.

 

@≠[y]

+ 5. i

 

@≠[x]

8.

 

 

6(7–9i)

6 *(7 -9 Ü)*

(–5+8i) =

(5 ±+8 Ü)=[x] 222.

 

@≠[y]

+ 606. i

16(sin30°+

16 *(s30 +

 

icos30°)÷(sin60°+

Üu30 )/(s60 +

icos60°)=

Üu60 )=[x]

13.85640646

 

@≠[y]

+ 8. i

• • • •

fill(5,5) = {5 5 5 5 5}

ª∑335 @,

5 )=

 

 

 

cumul L1 = {2 9 13}

ª∑34∑00=

 

 

df_list L1 = {5 –3}

ª∑35∑00=

aug(L1,L2) = {2 7 4 –3 –1 –4} ª∑36∑00 @,∑01)=

min L1 = 2

ª∑40∑00=

 

 

max L1 = 7

ª∑41∑00=

mean L1 = 4.333333333 ª∑42∑00=

med L1 = 4

ª∑43∑00=

 

 

sum L1 = 13

ª∑44∑00=

 

 

prod L1 = 56

ª∑45∑00=

• • • •

DEG, D°M’S

0°0’0.00001” x < 10000°

x, y r, θ

 

 

 

 

 

 

x2 + y2 < 10100

 

 

 

0 r < 10100

 

 

 

 

DEG:

θ < 1010

 

 

r, θ → x, y

RAD:

θ

π

1010

< —–

 

 

 

 

180

 

 

 

GRAD : θ

10

10

 

 

< — 10

 

 

 

 

 

9

 

 

DRG

DEGRAD, GRADDEG: x < 10100

 

 

 

 

π

98

 

RADGRAD: x < —

10

 

 

 

 

 

2

 

(A+Bi)+(C+Di)

A + C < 10100, B + D < 10100

(A+Bi)–(C+Di)

A – C < 10100, B – D < 10100

(A+Bi)(C+Di)

(AC – BD) < 10100

 

 

(AD + BC) < 10100

 

 

 

 

 

• • • •

Image 7
Contents Scientific Calculations Before Using the CalculatorInitial SET UP IntroductionMemory Calculations Calculations Using Physical ConstantsRandom Function Angular Unit ConversionsQuadratic and Cubic Equation Solvers Simulation Calculation AlgbStatistical Calculations Simultaneous Linear EquationsFor More Information about Scientific Calculator Error and Calculation RangesBattery Replacement SpecificationsÊûîìíãâ†ä +-*/±ESutSUTVhH Ile¡L÷⁄ $#!qQ% KRO?≥∆˚¬~£pnzw ¢PZWvrab xy≠→t, P, Q, R →sec, →min∑k, M, G, T, m, Ì, n, p, f ∑SOLVMMAT M2-VLEM3-VLE MQUAD, CubicPhysical Constants EuropeMetric Conversions
Related manuals
Manual 8 pages 58.14 Kb

EL-506W, EL-546W specifications

The Sharp EL-506W and EL-546W are advanced scientific calculators designed to meet the needs of students, professionals, and anyone requiring reliable mathematical calculations. Both models feature a blend of user-friendly design and sophisticated technology, making them ideal tools for educational and professional use.

The Sharp EL-506W is equipped with a wide array of functionalities, boasting over 300 scientific functions including standard calculations, statistical analyses, and trigonometric computations. One of its key features is the two-line display that allows users to view both the input and the result simultaneously, enhancing clarity and reducing the likelihood of input errors. It also includes a function for creating equations, enabling seamless entry and editing of mathematical expressions.

On the other hand, the EL-546W offers a broader range of features, with more than 400 functions covering everything from algebraic calculations to calculus. It supports complex number calculations and provides a unique "Math" display mode that shows results in traditional mathematical notation, making it highly suitable for more advanced calculations. The EL-546W also includes built-in memory, which allows users to store and recall calculations effortlessly.

Both calculators employ Sharp's proprietary "Dual-Text" technology, which enables users to perform operations in a clear and logical manner. The ergonomic design of these models ensures comfort during extended use, with a layout that places frequently used buttons within easy reach. The durable construction of the calculators enhances their longevity in various environments, making them reliable companions for daily use.

In terms of power efficiency, the EL-506W and EL-546W are designed to maximize battery life. They feature an automatic power-off function that preserves energy when the calculators are not in use, ensuring that users can rely on them when needed most.

Overall, the Sharp EL-506W and EL-546W stand out for their robust feature sets, user-friendly interfaces, and versatility in handling a diverse range of mathematical functions. Whether you're solving complex equations or performing routine calculations, these scientific calculators provide the precision and reliability necessary for any mathematical task.