Agilent Technologies 6634B, 66332A, 6633B, 6632B service manual Control Circuits

Page 52

4 - Principles of Operation

Two current shunt resistors monitor the output current. RmHi (R473) monitors the high current range; RmLo (R403) monitors the low current range. Shunt clamps, connected in parallel across RmLo, turn on at approximately 25 mA to limit the voltage drop at high currents. The Range_Select signal sets the level at which switching occurs. The output of the current monitor drives the level.

The SCR, connected across the output, will fire and short the output when an overvoltage condition is detected. The SCR is controlled by the OV_SCR* signal from the crowbar control circuit (described in the next section).

The output filter capacitor provides additional filtering of the dc output.

Control Circuits

As shown in Figure 4-2, the control circuits consist of the CV/CC controls, output voltage/current monitor, bias supplies, and SCR control.

The CV/CC control circuits provide a CV control loop, a positive CC control loop, and a negative CC control loop. For any value of load resistance, the supply must act either as a constant voltage (CV) or as a constant current (CC) supply. Transfer between these modes is accomplished automatically by the CV/CC control circuit at a value of load resistance equal to the ratio of the programmed voltage value to the programmed current value. The negative CC control circuit is activated when a current source such as another power supply is connected across the output terminals and its voltage is greater than the programmed voltage. A low level CV_Detect*, CC_Detect*, or CCN_Detect* signal is returned to the secondary interface to indicate that the corresponding mode is in effect.

When the CV loop is in control, diode D328 is conducting current. Voltage regulation is accomplished by comparing the programmed voltage signal CV_Prog with the output voltage monitor signal Vmon. The Vmon signal is in the 0 to +5 V range, which corresponds to the zero to full-scale output voltage range of the supply. If the output voltage exceeds the programmed voltage, Vmon goes high and produces a more negative-going CV signal, which reduces the input to the voltage gain stage and lowers the output voltage. Conversely, if the output voltage is less than the programmed voltage, Vmon goes low and produces a more positive-going CV signal, which increases the input to the voltage gain stage and raises the output voltage. Depending upon the position of the sense switch, the output voltage is either monitored at the supply's output terminals (local), or at the load (remote) using the +S and -S terminals with remote sense leads connected to the load. If the output voltage goes higher than the programmed value, the unit starts sinking current to reduce the output voltage.

When the CC loop is in control, diode D325 is conducting current. Current regulation is accomplished by comparing the programmed current signal CC_Prog with the output current monitor signal Imon_H. The Imon_H signal is produced by measuring the voltage drop across the current monitoring resistor and is in the 0 to +5 V range, which corresponds to the zero to full-scale output current range of the supply. If the output current exceeds the programmed current, Imon_H goes high and produces a more negative going CC signal, which reduces the input to the voltage gain stage and lowers the output current. Conversely, if the output current is less than the programmed current, Imon_H goes low and produces a more positive-going CC signal, which increases the input to the voltage gain stage and raises the output current.

When the supply is sinking current, only the CV control circuit or the CCN control circuit can be active. In this case, the supply is acting as a load instead of a power source and will attempt to pull the output voltage down by drawing off current from the externally applied source. The current that will be drawn from the externally supplied source is determined by the CC_Prog signal. When the current required to reduce the voltage is less than the programmed current value, the CV control circuit is active and regulates the output voltage. When the current required to reduce the voltage exceeds the programmed current value, the CCN control circuit is active. It regulates the output current by comparing the negative Imon_H signal to the inverted CC_Prog signal.

During operation, a PM_Inhibit signal will cause the turn-on control to turn off the bias to the voltage gain stage and shut down the output if any of the following occur:

52

Image 52
Contents Agilent Part No Microfiche No October Warranty Information CertificationSafety Summary Before Applying PowerSafety Symbol Definitions Symbol DescriptionInstrument Identification Printing HistoryItem Description Table of Contents Initialization ROM Upgrade Disassembly ProceduresIntroduction General Schematic Notes Backdating Post-repair CalibrationPage Safety Considerations OrganizationRelated Documents ChapterRevisions Electrostatic DischargeManual Revisions Firmware RevisionsType Specifications Recommended Model IntroductionTest Equipment Required Built-in Self TestsTest Setup Measurement TechniquesOperation Verification Tests Performance TestsElectronic Load Current-Monitoring ResistorCV Setup Constant Voltage CV TestsVoltage Programming and Readback Accuracy CV Load EffectCV Source Effect CV Noise PardTransient Recovery Time CC SetupConstant Current CC Tests Current Programming and Readback AccuracyLow Range Current Readback Accuracy Current Sink -CC OperationCC Load and Line Regulation CC Load Effect CC Source EffectPerformance Test Equipment Form CC Noise PardPerformance Test Record Forms − 4 mV + 4 mV Model Agilent 6634B Report No Date Test Description Minimum Vout − 12 mVVout − 42 mV Iout + 0.29 mATroubleshooting Overall Troubleshooting Flow ChartsTest Equipment Required for Troubleshooting Type Purpose Recommended ModelSheet 1. Main Flowchart Sheet 2. Main Flowchart Sheet 3. Main Flowchart Sheet 4. OV at Turn-On Sheet 5. OV at Turn-On Sheet 6. FS Indicated but Fuse OK Sheet 7. No Output Voltage Sheet 8. No Output Voltage Sheet 9 No Output Voltage Sheet 10. No Current Limit Sheet 11. Unit Does Not OV Sheet 12. High Output Voltage Specific Troubleshooting Procedures Power-on Self-test FailuresSelf-Test Error Codes/Messages Error Code Description Probable CauseCV/CC Status Annunciators Troubleshooting Bias and Rail VoltagesBias and Reference Voltages Bias Test Point Common MeasurementJ307 Voltage Measurements Voltage Measurements at J307 A2 Interface to A1 Main boardDisabling Protection Features Manual Fan Speed ControlCalibration Password Inhibit Calibration SwitchPost-repair Calibration ROM Upgrade Upgrade ProcedureInitialization Identifying the FirmwareRemote sense leads before attempting disassembly Disassembly ProceduresList of Required Tools A2 Interface Board, Removal and Replacement Cover, Removal and ReplacementFront Panel Assembly, Removal and Replacement S1 Line Switch, Removal and Replacement A3 Front Panel Board, Removal and ReplacementT1 Power Transformer, Removal and Replacement A1 Main Control BoardLine Voltage Wiring Transformer WiringPower Supply Interface signals Interface SignalsConnector Signal Description A3 Front Panel Circuits A2 Interface CircuitsPrimary Interface Secondary InterfaceA2/A3 Block Diagram Power Circuits A1 Main Board CircuitsA1 Block Diagram Control Circuits Principles of Operation Page Chassis, Electrical Designator Model PartNumber Qty DescriptionChassis, Mechanical Designator Model Part Number Qty DescriptionMechanical Parts ldentification A1 Control Board PC Board Assembly Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts A5 AC input/RFI Board Binding Post Option #020Relay Option #760 General Schematic Notes Model-dependent ComponentsDiagrams A1 Board Component Locations R434 825 R500 175 325 R435 R505 A1 Board Component Locations A4 and A6 Board Component Locations A1 Board schematic sheet A1 Board schematic sheet A1 Board schematic sheet A6 Relay Option Board schematic Index Index Manual Updates
Related manuals
Manual 82 pages 25.5 Kb Manual 103 pages 34 Kb

6632B, 6633B, 66332A, 6634B specifications

Agilent Technologies, a leader in electronic test and measurement solutions, offers a range of power supplies designed to meet various application needs. Notable models include the 6632B, 6634B, 66332A, 6633B, and 6612C. Each of these units provides unique features and technologies that cater to researchers, engineers, and technicians in the industry.

The Agilent 6632B is a single-output DC power supply that delivers up to 30V and 3A. It is known for its excellent load regulation and low noise, making it ideal for sensitive electronic testing. The model includes built-in voltage and current measurement capabilities, allowing users to monitor output conditions in real time. The 6632B is commonly used in laboratory environments, educational institutions, and manufacturing lines.

Moving to the 6634B, this model offers dual-output capabilities with a maximum output of 30V and 6A. This versatility enables simultaneous powering of two different devices or circuit sections. It also features parallel and series operation options, allowing users to create a custom power supply configuration for specific applications. With a programmable interface, the 6634B simplifies test automation, ensuring efficiency in extensive testing scenarios.

The Agilent 66332A stands out with its precision and high performance. This power supply provides three outputs—two programmable and one fixed—yielding flexible power configurations. Its intuitive user interface allows easy adjustment of voltage and current settings. The device is equipped with extensive protection features to safeguard both the power supply and the connected load against faults. It is an excellent choice for complex testing setups that require reliable power.

The 6633B model offers a high-performance power supply with dual outputs, similar to the 6634B but with enhanced specifications. It can provide up to 40V and 2A per channel, delivering precision for demanding applications. This model is particularly suited for industries focused on high-reliability applications, such as telecommunications and aerospace.

Lastly, the Agilent 6612C is a compact and lightweight power supply providing single-output up to 60V and 2A. This model is designed for simplicity and ease of use, making it an excellent choice for portable applications. The 6612C’s unique characteristics include a compact design and user-friendly controls, which facilitate operation in field settings.

In summary, Agilent Technologies’ power supply models—6632B, 6634B, 66332A, 6633B, and 6612C—offer an array of features that cater to a wide range of testing and research needs, ensuring reliable power delivery in various contexts.