Siemens PCS 7 manual Simulation Example

Page 19

Simulation Example

5 Simulation Example

The simulation example was generated from a copy of the plant section ModPre- Con of the APL_Example_EU, by introducing an additional integral block after the transfer function Proc662.

Figure 5-1 Modified process simulation of the example project; the inserted integrator is marked in blue

Copyright  Siemens AG 2010 All rights reserved

MPC Level

19

V 1.0, Beitrags-ID: 42200753

Image 19
Contents Applikationen & Tools Page Online-support.automation@siemens.com Warranty and Liability Table of Contents Objective of the Application PrefaceBasic Principles of Model Predictive Control IntroductionStable and Unstable Control Loops Whithout compensation With Ohne Integral Ausgleich Level Control Examples of Unstable Control LoopsPressure Control in Tanks Position Control Unit-step response of an integrating process Stabilization of Unstable Control Loopst 1s PID Tuner Starting Point Configuration of MPC with Slave ControllerConnection in CFC MV1 MV2 Connection of MPC and slave controller Commissioning Simulation Example OS picture of the example project Conclusion Related Literature Internet Link SpecificationsBibliography Version Date Modifications History
Related manuals
Manual 6 pages 24.98 Kb

PCS 7 specifications

Siemens PCS 7 is a powerful and comprehensive process control system designed for various industrial automation applications. It is part of the Siemens Totally Integrated Automation (TIA) portfolio, providing seamless integration with various Siemens products and services. The system is known for its flexibility, scalability, and reliability, making it suitable for industries such as energy, water treatment, chemicals, pharmaceuticals, and manufacturing.

One of the main features of Siemens PCS 7 is its modular architecture, which allows users to customize and scale their control solutions according to their specific needs. The system supports a diverse range of hardware and software components, from powerful servers and workstations to field devices and controllers. This modularity ensures that the system can adapt to different operational requirements while remaining cost-effective.

Another key feature is the advanced visualization capabilities offered by PCS 7. Users can create intuitive graphical interfaces that improve process monitoring and control. The system's Process Control and Monitoring (PCM) application enables real-time visualization of processes, enhancing decision-making and responsiveness.

Siemens PCS 7 is built on open and industry-standard communication protocols, such as Profibus and Profinet. This ensures interoperability with a wide array of third-party devices and systems, allowing seamless integration into existing infrastructures. The system supports a variety of communication interfaces, enhancing data exchange and connectivity within the control architecture.

The PCS 7 system also incorporates sophisticated process automation technologies, including batch control, continuous process control, and advanced process control algorithms. These capabilities not only facilitate efficient operation but also optimize production processes through improved resource management and reduced waste.

Security is a critical aspect of Siemens PCS 7, addressing the growing concerns of cybersecurity in industrial environments. The system incorporates robust security measures, including user authentication, data encryption, and regular software updates, ensuring that industrial operations remain protected against potential threats.

In summary, Siemens PCS 7 exemplifies modern industrial automation technology with its modularity, advanced visualization, open communication, sophisticated process control capabilities, and strong security features. Whether adapting to new technologies or optimizing existing operations, PCS 7 stands as a versatile and resilient platform for today's diverse industrial automation challenges.