Tech Note
Now as Sensor A approaches its saturation point (512 – 1023 counts) the output uses the average of both sen- sors’ data to “smooth” the transition between the two sensor response graphs (see Figure 6). It still limits the use of the lowest bits on Sensor B (those that are most susceptible to noise) and keeps the calibration factor at 64 to increase the output precision of the upper bits.
FIGURE 6 – Averaging used to smooth calibration in overlapped region
Example 4 – Dual-Slope Dynamic Range
Lastly, you can use the approach described in Example 3 to smooth the transition between two sensor output lines that have intentionally been given different slopes. This
To use this approach, overlap and calibrate the two sensor responses as in Example 2, as if a
FIGURE 7 – Dual-slope HDR calibration
NO.