Veo 802.11b manual Motion Detection, Smtp server address, From, Subject

Page 21

Motion Detection

The camera can be triggered by a motion sensor input to send you an email with a snapshot of the current image attached. To enable this capability, check the Enable Detection checkbox and fill in the fields on the page as described below:

Note: To enable motion detection you must first obtain the optional motion sensor and attach it to the

motion sensor jack of the camera. Refer to Appendix F: Motion Sensor Setup for more information.

SMTP server address

This is the IP address of the server you use to send mail. Almost all mail servers support this basic mail protocol. Usually your Internet Service Provider (ISP) will provide you a server address for sending mail in the form of a domain name such as “mail.ispname.com”. You can find this information from the email settings on your PC or by consulting your ISP. From your mail server’s domain name, you can determine its IP address by pinging the domain name and observing the reply. To ping your mail server click Start -> Run -> ping mail.ispname.com. For more help with the ping command, refer to Appendix C.2: Using PING.

To

Enter the address for the mail recipient.

The format is Recipient Name <Recipient’sUsername@Recipient’sISP.com>

For example: john <john@earthlink.com>

From

Enter the address you use to send mail.

The format is Your Name <YourUsername@YourISP.com>

For example: bob <bob@sbcglobal.net>

Subject

The subject for the email message. For example “Motion Detected! Camera 123”

Page 21 of 69

Image 21
Contents Ethernet and 802.11b WiFi Network Camera Table of Contents Appendix F Motion Sensor Setup Chapter Welcome to the Veo ObserverPackage Contents Requirements To access cameras from the InternetTo connect the camera to your LAN To view the camera webHardware Description and Features Wireless Observer ConnectionsAntenna Lens IP Address Display IP Address LCD Hardware Setup Observer Camera SetupConnecting the Ethernet cable Connecting the power adapterTurning the camera on Determining a Camera’s full IP address using the IP displayWireless Parameter Setup Hardware Setup Wireless ObserverNetwork Settings Wall Mounting Mounting the CameraPage Usernames and Passwords Accessing the CameraWeb Browser Access Questions, Troubleshooting, and Technical SupportGetting an IP address Page Live Video HelpAbout Camera Information Camera ConfigurationAppendix a Restoring Factory Default Settings User AccountsAdding a New User Account Smtp server address Motion DetectionFrom SubjectReset Interval Video PropertiesMessage PC Software Installation License Agreement Screen Observer Setup Utility Using PingManually Assigning a Static IP Address Open a Camera’s Home Camera Settings TableUpdating the Camera’s Firmware Camera Manager Observer Studio PC ApplicationAdd a Camera Group Logging into a CameraDigital Zoom Control Camera View ControlsBrightness Control Image InfoSettings Multi-Camera Viewing Recording a VideoMovie Maker Making or Editing a Movie Using the GalleryAdd Background Music Add a New SceneRemove Music Select Scene DurationClick E-mail Movie To a Friend Homepage Designer Designing a HomeLinking to Another Publishing the webpage to your Internet Service Provider Set Background Music and chooseEdit Next Page To edit the next page. -or Editing an Image or Animated Character Apply effects to fontsAdding Sound Effects to an Animated Character Using Mapi with Microsoft Outlook Express Configuring your E-mail Program to Send FilesUsing Mapi with Microsoft Outlook Using America Online AOL, Hotmail, or Yahoo! MailPage WAN IP Address Accessing Cameras Over the InternetNetwork Address Translation NAT Word about terminologyPort Forwarding Default GatewayDynamic Domain Name Service Ddns Accessing Multiple Cameras over the InternetPage Restoring Factory Default Settings To use the external microphone, follow the steps below External MicrophoneDetermining your IP Address and Network Settings Using PingNetwork Utilities If there is no response on this address you’ll see Router Configuration Wireless Cable/DSL Gateway Router F5D6230-31600 54g Wireless DSL/Cable Gateway Router F5D7230-4 DI-604/DI-614+/DI-624DI-704/704P DI-714P+ DI-714RP614 Web Safe Router MR814 Wireless Router Wired Base Station MN-100 Wireless Base Station MN-500Click Add Custom Service MR314 Cable/DSL Wireless RouterSpeedStream 2604 4-Port DSL/Cable Router ORiNOCO BG-2000 Broadband GatewaySpeedStream 2624 Wireless DSL/Cable Router Checked Internet Explorer Security Settings Motion Sensor Setup Wiring the sensor to the cameraMounting the motion sensor to the camera mounting bracket Wire Color Chart Troubleshooting, and Technical Support Frequently Asked QuestionsRouter. Refer to Appendix D Router Configuration for more Also configured properly. Refer to Appendix D RouterRefer to .1 WAN IP Address Technical Support Performance IssuesConsumption Estimating BandwidthVeo Observer Network Camera Technical Specifications Technical SpecificationsTerm Explanation Relates to camera how GlossarySsid Warranty Effect of local law Exclusion of damages

802.11b specifications

The Veo 802.11b is a notable wireless networking standard that emerged in the late 1990s as one of the first widely adopted protocols for local area networks (LANs). Operating in the 2.4 GHz frequency band, 802.11b provided users with the ability to connect to the internet and share resources without the constraints of wired connections.

One of the primary features of 802.11b is its maximum data transfer rate of 11 Mbps, which was impressive at the time of its release. This speed allowed for basic internet usage, file sharing, and general network connectivity. While this might seem slow by today’s standards, it laid the foundation for the rapid evolution of wireless technologies.

Veo 802.11b utilized Direct Sequence Spread Spectrum (DSSS) technology, which enhanced the reliability of the connection by spreading the signal over a wider frequency range. This technique helped to reduce interference, particularly in environments with multiple wireless devices operating on the same frequency. The standard also included mechanisms for ensuring data integrity, such as the use of cyclic redundancy check (CRC) algorithms.

In terms of range, Veo 802.11b offered coverage of approximately 100 to 300 feet indoors, and up to 1000 feet outdoors depending on environmental factors. This range made it suitable for home networks and small office environments, allowing users to access the internet from different locations within a building without the need for cumbersome cabling.

Another characteristic of the 802.11b standard was its compatibility with the earlier 802.11 standard, ensuring that devices using both protocols could operate together. This backward compatibility facilitated a smoother transition for users upgrading their systems, as they could maintain connectivity with older devices while enjoying the benefits of faster wireless networking.

Security was also an important aspect, though initially limited. The standard employed Wired Equivalent Privacy (WEP) for data encryption, which provided a basic level of security to protect wireless communications. However, as vulnerabilities were discovered in WEP, the need for stronger security protocols became evident, leading to further developments in later standards.

Ultimately, the Veo 802.11b played a pivotal role in revolutionizing wireless communications. It established the groundwork for further advancements such as 802.11g and 802.11n, which provided higher speeds and greater efficiency. While newer standards have since eclipsed its capabilities, 802.11b remains a significant milestone in the evolution of wireless networking technology. Its influence can still be seen in the pervasive use of wireless networks in homes, offices, and public spaces around the world today.