AB Soft Mercury 3000Si manual Operational Modes Trigger Approach Timing Diagram

Page 25

Operational Modes: Trigger Approach Timing Diagram

The Trigger Approach can be used in applications where synchronization of the position data to an event is required. Often, this mode is used when a fixed latency between a clock signal and the sampled position data is required. The customer can choose this mode of operation by using the optional SmartPrecision Software. In this mode, triggering is controlled by the n_spiEnable signal.

The falling edge of n_spiEnable signal starts the process by immediately resetting the internal calculators and acquiring the latest A/D converter information. Old data in the calculation chain is discarded and the initiation of a new position calculation is started. The new data is ready in 1420ns. The n_spiEnable signal for retrieving the data must be asserted within 210ns after the new data is ready or the triggered acquisition will be over written by new data.

Shifting the data out of the interpolator's serial port is accomplished exactly as in the Standard Communication mode of operation. In order to sample the next position, n_spiEnable must be brought high and then reasserted. See the Trigger Approach timing dia- gram below.

Trigger Approach Timing Diagram

tW

tCS

n_spiEnable

 

 

tTDR

 

 

tCSC

 

 

tspiH

 

tspiL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

spiClock

 

 

 

 

 

Clk1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCSD

 

 

 

 

 

 

 

tV

 

 

spiDataOut

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCCS

Clk36

LSB

Trigger Approach Timing Diagram

 

Symbol

Parameter

Minimum

Typical

Maximum

Units

 

 

tspiH

spiClock High Time

50

 

 

ns

 

 

tspiL

spiClock Low Time

50

 

 

ns

 

 

tTDR

￿n_spiEndable to DataReady

1420

 

1600

ns

 

 

tW

￿n_spiEnable Low for trigger

50

 

 

ns

 

 

tCSC

n_spiEnable to ￿spiClock

0

 

 

 

 

 

tCSD

￿n_spiEnable to DataValid

 

80

 

ns

 

 

tV

￿spiClock to Data Valid

 

80

 

ns

 

 

tCCS

￿spiClock to ￿n_spiEnable

0

 

 

ns

 

 

tCS

n_spiEnable High

50

 

 

ns

 

 

 

 

 

 

 

 

 

Page 23

Image 25
Contents Mercury 3000Si Dual Axis Averager Introduction Mercury family M10 of encoders Table Of Contents With Linear scale Mercury 3000Si Encoder SystemShown with Rotary scale With Rotary scaleLinear Encoders Mounting Installation InstructionsProper Alignment LED Linear Encoders AlignmentRotary Encoders Mounting Confirm proper alignment over the full range of motion Rotary Encoders AlignmentReference Section Installation of Linear Scales Positioning the ScaleMounting the Scale Epoxy and RTV Mounting Recommended for best accuracyRecommendations for Power Customer Interface Cable Requirements Signal WiringShield Termination Signal Description Serial Output SpecificationSignal Description IntroductionIndex Processing Hardware Requirements Optional SmartPrecision Software Installation InstructionsMicroE SS300cDI SmartPrecision Software Preliminary Main Screen Configuration and Setup SmartPrecision SoftwareConfigurations screen M3000SiDAA ConfigurationOutput Configuration Assignment for Output ChannelChannel 1 & 2 Calibration Settings Dual Axis Software Display Settings Display SettingConfirm Calibration screen Calibration SmartPrecision SoftwareCalibrate SmartPrecision Software Function System SpecificationsOperational Modes Standard Communication Mode TspiL Operational Modes Trigger Approach Timing Diagram Solution TroubleshootingContact MicroE Systems Cleaning scales