Baldor MN770 manual Elevator Motor Horsepower Selection, US Measurement System

Page 15

Elevator Motor Horsepower Selection

Selection of a motor and control for an elevator application is dependent upon several variables. The primary variable is the overall mechanical efficiency of the elevator. The efficiency of gear driven elevators varies from about 45 percent for slow moving cars to 70 percent for faster moving cars. On gear-less elevators, efficiency may be in the 90 percent range.

The horsepower required for a specific application can be calculated as follows:

US Measurement System

LBS x FPM x [1 * (OCW)]

HP ￿100

33, 000 x (%EFF100 )

Where:

LBS = Car capacity in pounds

FPM = Car speed in feet per minute (FPM)

OCW = Over counter weight in %(percent) of car capacity %EFF = Elevator mechanical efficiency (decimal)

Metric Measurement System

 

Kg x m￿s x [1 * (OCW)]

Motor KW ￿

100

102 x (%EFF)

 

Where:

100

 

Kg = Car capacity in Kilograms

m/s = Car speed in meters per second)

OCW = Over counter weight in %(percent) of car capacity %EFF = Elevator mechanical efficiency (decimal)

3-4 Application Considerations

MN770

Image 15
Contents MN770 Elevator Application GuideTable of Contents Ii Table of Contents MN770 Modernizations Section General InformationIntroduction Drive DefinitionLimited Warranty Safety Notice VAC or 460 VAC maximum per control rating Perform a ªMeggerº test. Failure to disconnect motor fromUnderwriter Laboratory requirements Drive Performance Comparison FeatureSection Technologies Overview20H Control DC SCR ControlInverter 15H Control21H Control Vector 17H & 18H Controls22H Control Section Application Considerations Electric Drives Common Control Features Operating ModeAvailable Operating Modes Elevator Motor Horsepower Selection US Measurement SystemMetric Measurement System Motor Sizing OCW = Dynamic Brake Hardware SelectionCable Preparation Section Hardware InformationGeneral Considerations Encoder RetrofitEncoder Cables Single Ended Connections Encoder Cable ConnectionDifferential Connections Encoder End Control EndBuffered Encoder Output Feedback Section Set-Up InformationDC SCR Controls Field ControlOverload = Fault Following Error = on Torque Proving = on Final InstallationFinal Adjustments Contactor Armature EnableBrake Release Signal Speed CommandInverter Controls Initial Installation and StartupPage TURN-ON Vector Controls Full Load Test Balanced Car TestSeries 18H Control Considerations Final Wiring ConnectionsInitial Set-up ProcedureSlip Adjustment Value Rated Motor Load Slip Adjustment ValueFinal Set-up Power Up/Down Sequence for Vector Controls Date Pre-Installation TestsVector Control Worksheet Set-Up Information MN770 Section Troubleshooting Electrical Noise Display Electrical Noise Considerations R-C Snubber Circuit & twisted-pair10HP, 460VAC Drive 30HP, 500VDC Drive, Shielded 10 Isolated Mounting Method Encoder Circuits Wiring PracticesPower Wiring Analog Signal WiresFiber Optics Optical IsolationPlant Ground Optical CouplersLoad Weighing / Torque Feed Forward Appendix aDescription of Operation Table A-1Serial Communications Appendix BAppendix B MN770 Elevator Industry Glossary Appendix CPage Page Appendix C MN770  Baldor Electric Company MN770 97 C&J300 Box

MN770 specifications

The Baldor MN770 is an impressive industrial motor designed for a variety of applications, showcasing robust construction and advanced technology. Known for its reliability and efficiency, the MN770 is manufactured by Baldor Electric Company, a prominent name in the electric motor industry.

One of the main features of the MN770 is its high-efficiency design. This motor adheres to stringent efficiency standards, helping to reduce energy consumption and lower operational costs. It typically meets or exceeds NEMA Premium Efficiency ratings, making it an excellent choice for businesses looking to optimize their energy use.

The MN770 motor is built with a durable cast iron frame, ensuring longevity and resistance to harsh operating conditions. Its weatherproof design is ideal for both indoor and outdoor applications, making it suitable for various environments, including manufacturing plants, water treatment facilities, and agricultural operations.

Another significant characteristic of the MN770 is its versatility. The motor is available in a range of horsepower ratings, allowing users to select the model that best fits their specific needs. Additionally, it offers various mounting configurations and voltage options, further enhancing its adaptability for diverse applications.

The motor utilizes advanced insulation systems and cooling technologies to ensure optimal performance and a longer lifespan. The robust design helps to dissipate heat effectively, enabling the motor to operate efficiently even under heavy loads. This characteristic is essential for applications requiring continuous operation without compromising reliability.

Moreover, the Baldor MN770 incorporates advanced design features such as precision-balanced rotors and high-performance bearings. These characteristics contribute to reduced vibration and noise levels, promoting a quieter working environment and improving overall operation efficiency.

In summary, the Baldor MN770 motor stands out due to its high efficiency, robust construction, versatility, and advanced technologies. Its ability to perform reliably in various industrial applications makes it a popular choice among engineers and facility managers. Investing in the MN770 not only enhances operational efficiency but also supports sustainability efforts by reducing energy consumption in industrial environments.