Lincoln Electric SVM146-A Controls and Settings, Cutting Operation, Pilot ARC Considerations

Page 19

B-5

B-5

OPERATION

Return to Section TOC

Return to Section TOC

Return to Section TOC

TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

TOC

CONTROLS AND SETTINGS

FIGURE B.2 - CASE FRONT CONTROLS

 

 

 

Reset

Gas

 

 

Status

 

Purge

 

Gas

 

Button

Button

 

Indicators

 

 

Regulator

 

 

 

 

 

 

 

 

 

 

 

 

Gauge

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XXXX XXXX XXXX XXXX

Output

 

Gas

Control

 

Regulator

Knob

 

Knob

Consumable

 

PRO-CUT 80

 

 

Storage

 

 

(behind

 

 

door)

 

 

 

 

Input

Torch

 

Power

 

Switch

Connector

 

Work

 

 

 

 

Cable

Interface

 

 

 

 

Connector

OUTPUT CURRENT CONTROL KNOB - Adjusts the amount of cutting current applied. Affects cutting speed, dross formation, cut width, heat zone and trav- el speed.

TORCH CONNECTOR - Quick- connect type coupling for the PCT 80 cutting torch.

WORK CABLE - Provides clamp and cable connection to workpiece.

ON/OFF POWER SWITCH - Turns machine on or off.

GAS REGULATOR KNOB - Adjusts compressed gas pressure delivered to the torch. Length of torch hose is an adjustment factor. Optimum setting is 70-75 psi. The gas purge button must be pressed in to set pres- sure.

GAS REGULATOR GUAGE - Provides gas presssure reading as set by the gas regulator knob.

GAS PURGE BUTTON - Used to check or set gas pressure. Push in and hold to check pressure, then continue to hold to set the pressure. Shuts off gas when released.

RESET BUTTON - Used to reset the machine following a safety circuit trip.

STATUS (DISPLAY) BOARD INDICATORS - Four lights indicating Power, Gas Low, Thermal and Safety.

Occasionally, the pilot arc may sputter or start inter- mittently. This is aggravated when the consumables are worn or the air pressure is too high. Always keep in mind that the pilot arc is designed to transfer the arc to the workpiece and not for numerous starts without cutting.

When the pilot arc is started, a slight impulse will be felt in the torch handle. This occurrence is normal and is the mechanism which starts the plasma arc. This impulse can also be used to help troubleshoot a "no start" condition.

CUTTING OPERATION

When preparing to cut or gouge, position the machine as close to the work as possible. Make sure you have all materials needed to complete the job and have taken all safety precautions. It is important to follow these operating steps each time you use the machine.

Turn the machine's ON/OFF POWER SWITCH to the OFF position.

Connect the air supply to the machine.

Turn the main power and the machine power switch on.

-The fan should start.

-The pre-charge circuit will operate for 3 seconds, then the green "Power" status indicator should turn on.

-If the "SAFETY" status indicator is lit, push the "Reset" button. If there is no problem, the status indicator will go off. If there is a problem, refer to "STATUS INDICATOR" in this section.

Be sure that the work lead is clamped to the work- piece before cutting.

Set the output current control knob for maximum current for high cutting speed and less dross forma- tion per Figure B.1. Reduce the current, if desired, to reduce the kerf (cut) width, heat affected zone or travel speed as required.

Push-in and hold the Purge button to check or set the gas pressure. Pull the pressure regulator cap out and turn it to set the pressure.

-Adjust the gas regulator for 70 PSI for 25 foot (7.62m) torches or 75 PSI for 50 foot (15.24m) torches.

-Release the Purge button.

Return to Section

Return to Master

PILOT ARC CONSIDERATIONS

The Pro-Cut has a smooth, continuous pilot arc. The pilot arc is only a means of transferring the arc to the workpiece for cutting. Repeated pilot arc starts, in rapid succession, is not recommended as these starts will generally reduce consumable life.

PRO-CUT 80

Image 19
Contents PRO-CUT California Proposition 65 Warnings SafetyElectric Shock can kill Cylinder may explode if damaged Précautions DE Sûreté Master Table of Contents for ALL Sections Table of Contents Installation Section Technical Specifications PRO-CUT InstallationGAS Requirements Technical Specifications Cont’d PRO-CUTStacking Safety PrecautionsSelect Suitable Location Lifting and MovingGround Connection Input Power Cord Connector InstallationInput Wire and Fuse Size Input ConnectionsReconnect Procedure Reconnect ProcedureReturn Return to Section TOC GAS Input ConnectionsTorch Connection Output ConnectionsTable of Contents Operation Section OPERATIONB-2 Safety InstructionsOperating Instructions General Description Operational Features and ControlsDesign Features Advantages OperationConsumable Life Cutting CapabilityLimitations Cutting Operation Controls and SettingsPilot ARC Considerations Safety Status Indicator User Responsibility Preheat Temperature forProcedure Recommendations Plasma CuttingSuggestions for Extra Utility from the PRO-CUT System Thick Sections of MetalARC Initiated ARC StartARC Voltage PRO-CUT Accessories Table of ContentsGeneral Options Accessories Table of Contents Maintenance Electric Shock can kill Input Filter Capacitor Discharge ProcedurePeriodic Maintenance Routine MaintenanceMaintenance Table of Contents Theory of Operation Section Theory of Operation Input Line VOLTAGE, Switch and Main TransformerPrecharge and Protection Power BoardFigure E.4 Main Transformer Main TransformerFigure E.5 Plasma Output Board and Torch Output Board and TorchFigure E.6 Control and Display Boards Control and Display BoardsOverload Protection Protection CircuitsThermal Protection Insulated Gate Bipolar Transistor Igbt Operation Minimum Output Pulse Width ModulationMaximum Output PRO-CUT Table of Contents Troubleshooting & Repair Section HOW to USE Troubleshooting Guide Troubleshooting & RepairPC Board can be damaged by static electricity PC Board Troubleshooting ProceduresOutput Problems Troubleshooting GuideFunction Problems Air begins to flow when Make sure the air pressure is Cutting Problems LED Function Problems Troubleshooting Guide Materials Needed DescriptionFigure F.1 Location of Input Filter Capacitor Terminals Input Filter Capacitor Discharge ProcedureInput Rectifier Test Input Rectifier Test Test ProcedureTest Point Terminals Analog Meter X10 Range Primary Power Board Resistance Test Capacitor Voltage Test Capacitor Voltage Test Primary Power Board Resistance TestBoard Removal and Replacement Procedure Test Procedure Table F.3 Capacitor Voltages Output Power Board Resistance Test Figure F.4 Output Power Board Lead Locations Output Power Board Resistance TestOutput Power Board Removal and Replacement Procedure Torch Continuity and Solenoid Test Torch Continuity and Solenoid Test Test ProcedureAIR/GAS Solenoid Test Figure F.6 AIR Solenoid AIR/GAS Solenoid TestT2 Auxiliary Transformer Test T2 Auxiliary Transformer Test ProcedureYellow 1J21 Yellow 7J21 115VAC Test Point Expected VoltageTrigger Circuit Test Simplified Trigger Circuit Trigger Circuit TestPerform the Input Filter Capacitor Discharge Procedure PRO-CUT 80 Output Board LED Definitions Figure F.11 Control Board LEDs Control Board LED DefinitionsLOW Voltage Circuit Test T2 Auxiliary Transformer LOW Voltage Circuit TestFigure F.12, Low Voltage Circuit Diagram Test Point Figure F.15 Display Board Test Points Control Board Removal and Replacement Screws Control Board Removal and ReplacementFigure F.18 Control Board Removal from Mounting Pins Display Board Removal and Replacement Figure F.19 Case Front Screw Removal Display Board Removal & ReplacementFigure F.20 Display Board Removal Output Power Board Removal and Replacement Output Power Board Output Power Board Removal & ReplacementFigure F.22 Output Board Lead Locations Replacement Procedure This procedure takes approximately 40 minutes to perform Removal and Replacement Primary Power Board and Filter CapacitorRemoval Procedure Heatsink Mounting Screws Socket Head Capacitor Removal Capacitor Replacement and P.C. Board ReplacementInput Rectifier Bridge Removal and Replacement Figure F.25 Input Rectifier Lead Locations PRO-CUT Input Rectifier Bridge Removal and ReplacementTroubleshooting & Repair Input Idle Amps and Watts Retest After RepairPRO-CUT Electrical Diagrams Wiring Diagram PRO CUT 2ELECTRICAL Diagrams G-2Cutting Current Setpoint Local Schematic Control PC BoardPRO-CUT 80 Control PC Board Assembly Control Board Code 10574 onlyG3560-1 PC Board Assembly Control Board Code 10577 & 10578 onlySchematic Power PC Board 6ELECTRICAL DIAGRAMSG-6Power PC Board Assembly Power BoardElectrical Reqd Identification PC Board Assembly Output BoardFilename Schematic Display PC BoardLight BAR,LED,GREEN PC Board Assembly Display BoardSVM Error Reporting Form

SVM146-A specifications

Lincoln Electric's SVM146-A is a versatile and powerful multi-process welding machine designed for professionals in various industries. Known for its robustness and reliability, this machine excels in both performance and user-friendly features, making it a popular choice among welders.

One of the standout features of the SVM146-A is its multi-process capability, allowing users to perform MIG, TIG, and stick welding using a single unit. This versatility is enhanced by Lincoln Electric's innovative Auto-Set technology, which automatically adjusts the machine's settings based on the selected process and materials being welded. This feature significantly reduces the time spent on setup and helps ensure optimal weld quality, even for less experienced operators.

The SVM146-A is powered by a reliable inverter design, which provides greater efficiency compared to traditional transformer-based machines. This compact and lightweight design allows for easy transport, making it ideal for job sites or remote locations. The inverter technology also contributes to enhanced arc stability and better overall performance, providing high-quality welds in less time.

Another key characteristic of this welding machine is its robust construction, designed to withstand the rigors of heavy industrial use. The SVM146-A features a durable chassis and control panel, ensuring longevity and reliability under challenging working conditions. Additionally, its intuitive interface allows users to easily navigate settings and make adjustments as needed.

Safety is a paramount concern in welding applications, and the SVM146-A is equipped with several safety features, including over-temperature and over-voltage protection, ensuring that the machine operates safely even in demanding environments. It also features a start inhibit system, preventing the machine from being started under unsafe conditions.

The SVM146-A is compatible with a variety of welding accessories and consumables, enhancing its flexibility and usability across different applications. Whether it’s automotive repair, heavy fabrication, or maintenance work, this welding machine adapts to various tasks, making it a valuable addition to any professional's toolkit.

In conclusion, Lincoln Electric's SVM146-A stands out as a multi-process welding machine that combines advanced technology, robust design, and user-friendly features. It is engineered for performance and reliability, making it an excellent investment for professionals dedicated to achieving high-quality welds.