Lincoln Electric pmn manual Welding Sparks can cause fire or explosion, Iii

Page 4

iii

SAFETY

iii

WELDING SPARKS can cause fire or explosion.

6.a. Remove fire hazards from the welding area. If this is not possible, cover them to prevent the welding sparks from starting a fire. Remember that welding sparks and hot

materials from welding can easily go through small cracks and openings to adjacent areas. Avoid welding near hydraulic lines. Have a fire extinguisher readily available.

6.b. Where compressed gases are to be used at the job site, special precautions should be used to prevent hazardous situations. Refer to “Safety in Welding and Cutting” (ANSI Standard Z49.1) and the operating information for the equipment being used.

6.c. When not welding, make certain no part of the electrode circuit is touching the work or ground. Accidental contact can cause overheating and create a fire hazard.

6.d. Do not heat, cut or weld tanks, drums or containers until the proper steps have been taken to insure that such procedures will not cause flammable or toxic vapors from substances inside. They can cause an explosion even though they have been “cleaned”. For information, purchase “Recommended Safe Practices for the Preparation for Welding and Cutting of Containers and Piping That Have Held Hazardous Substances”, AWS F4.1 from the American Welding Society (see address above).

6.e. Vent hollow castings or containers before heating, cutting or welding. They may explode.

6.f. Sparks and spatter are thrown from the welding arc. Wear oil free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes and a cap over your hair. Wear ear plugs when welding out of position or in confined places. Always wear safety glasses with side shields when in a welding area.

6.g. Connect the work cable to the work as close to the welding area as practical. Work cables connected to the building framework or other locations away from the welding area increase the possibility of the welding current passing through lifting chains, crane cables or other alternate cir- cuits. This can create fire hazards or overheat lifting chains or cables until they fail.

6.h. Also see item 1.c.

CYLINDER may explode if damaged.

7.a. Use only compressed gas cylinders

containing the correct shielding gas for the process used and properly operating regulators designed for the gas and

pressure used. All hoses, fittings, etc. should be suitable for the application and maintained in good condition.

7.b. Always keep cylinders in an upright position securely chained to an undercarriage or fixed support.

7.c. Cylinders should be located:

Away from areas where they may be struck or subjected to physical damage.

A safe distance from arc welding or cutting operations and any other source of heat, sparks, or flame.

7.d. Never allow the electrode, electrode holder or any other electrically “hot” parts to touch a cylinder.

7.e. Keep your head and face away from the cylinder valve outlet when opening the cylinder valve.

7.f. Valve protection caps should always be in place and hand tight except when the cylinder is in use or connected for use.

7.g. Read and follow the instructions on compressed gas cylinders, associated equipment, and CGA publication P-l, “Precautions for Safe Handling of Compressed Gases in Cylinders,” available from the Compressed Gas Association 1235 Jefferson Davis Highway, Arlington, VA 22202.

FOR ELECTRICALLY powered equipment.

8.a. Turn off input power using the disconnect switch at the fuse box before working on the equipment.

8.b. Install equipment in accordance with the U.S. National Electrical Code, all local codes and the manufacturer’s recommendations.

8.c. Ground the equipment in accordance with the U.S. National Electrical Code and the manufacturer’s recommendations.

Mar ‘95

POWER MIG 215

Image 4
Contents Power MIG Safety California Proposition 65 WarningsElectric Shock can kill Welding Sparks can cause fire or explosion IiiPrécautions DE Sûreté Sûreté Pour Soudage a L’ArcPlease Examine Carton and Equipment For Damage Immediately Master Table of Contents for ALL Sections Master Table of Contents for ALL Sections Installation Technical Specifications Power MIGSafety Precautions Uncrating the Power MIGInput POWER, Grounding and Connection Diagrams LocationOutput Polarity Connections Figure A.1 Dual Voltage Machine Input ConnectionsGUN and Cable Installation Auxiliary Power ReceptaclesShielding GAS Cylinder may explode if damagedOperation Wear eye, ear and body protec- tionWire Drive Roll Wire Size Conversion PartsProduct Description LimitationsWire Reel Loading READI-REELS, Spools or Coils Procedure for Changing Drive and Idle Roll SetsTo Start the Welder Feeding Wire Electrode Idle Roll Pressure SettingMaking a Weld Figure B.2bAvoiding Wire Feeding Problems Wire Feed Overload ProtectionFAN Control Input Line Voltage VariationsAccessories Accessories Maintenance Liner Removal and REPLACE- Ment Table D.1GUN Handle Disassembly English Metric Description SizeTroubleshooting HOW to USE Troubleshooting GuideOutput Problems Feeding Problems GAS Flow Problems Wiring Diagrams Wiring Diagrams Dimension Print M19231Power MIG Power MIG Precaucion Warnung

pmn specifications

Lincoln Electric is a prominent name in the world of welding and cutting solutions, and its PMN (Precision Manufacturing Network) division is a testament to the company's commitment to innovation and quality in manufacturing processes. The PMN is designed to provide high-performance solutions for diverse industrial applications, focusing on precision, productivity, and advanced technology.

One of the main features of the Lincoln Electric PMN is its integrated approach to manufacturing, which combines traditional fabrication techniques with cutting-edge automation. This enables the PMN to produce high-quality parts with improved accuracy and efficiency. The use of advanced robotics and automation systems allows for minimal human intervention, reducing the risk of errors and enhancing the overall reliability of the production process.

Another significant characteristic of the PMN is its dedication to lean manufacturing principles. By streamlining workflows and minimizing waste, Lincoln Electric ensures that production times are reduced while maintaining high quality. This lean approach not only enhances productivity but also reduces costs, allowing businesses to achieve better profit margins.

The PMN also focuses on the integration of advanced technologies such as artificial intelligence and machine learning in its manufacturing processes. These technologies enable the prediction of maintenance needs and optimization of operating parameters, leading to enhanced equipment longevity and reduced downtime. The data analysis capabilities provided by AI tools help in refining processes and improving product quality consistently.

In terms of product offerings, the Lincoln Electric PMN specializes in custom manufacturing solutions tailored to meet specific client requirements. This adaptability makes it suitable for various industries, including automotive, aerospace, and energy. The PMN is equipped to handle complex projects, providing seamless integration from design and prototyping to final production.

Furthermore, Lincoln Electric's commitment to sustainability is evident in the PMN's practices. The emphasis on energy-efficient processes and the use of recyclable materials underlines the company's goal of reducing the environmental footprint while delivering top-notch manufacturing services.

In summary, Lincoln Electric's Precision Manufacturing Network represents the confluence of tradition and technology. Its focus on precision manufacturing, lean principles, automation, and sustainability ensures that it remains a leader in the competitive landscape of manufacturing solutions. The PMN stands out as a model for efficiency and innovation, catering to a wide array of industrial needs.