Nortel Networks 411-2021-111 manual Cell Site Configurations, Overview, Omni configuration

Page 23

2-1

Cell Site Configurations

Overview

The DualMode Metrocell can be configured in the following ways:

Omni-directional transmit/receive

120° Sectored Transmit Sectored Receive (STSR)

60° Sectored Transmit Sectored Receive (STSR)

The majority of systems may begin as Omni-directional to minimize startup costs. As the subscriber traffic increases, the Omni configuration may reach its maximum traffic capacity. At that time it will be necessary to provide additional capacity through expanded spectrum, 120 degree sectorization, 60 degree sectorization, or frequency borrowing.

It is important that the operator selects a frequency plan before the Omni configuration is installed. If not, future expansions will be very difficult. The most common frequency plans are:

7 Cell Cluster (N=7)—This frequency plan allows proper expansion from Omni to 120 degree sectorization (see Figure 2-1 and Figure 2-2).

4 or 12 Cell Cluster (N=4 or N=12)—This frequency plan allows proper expansion from Omni to 60 degree sectorization (see Figure 2-3).

Both non-expanded and expanded spectrums are shown in Appendix B for the N=7 and N=4 frequency groups.

Omni configuration

In an Omni (N=7) configuration, the 416 RF channels are divided among a group of seven cells (often known as a cluster). Each cell consists of a maximum of 59 or 60 RF channels (four cells with 59 channels and three cells with 60 channels, where three of the 59 or 60 channels are Control channels). The RF channels are reused by other cell clusters. Frequency reuse refers to the use of RF channels on the same carrier frequency in different areas which are separated from one another by the greatest possible distance so that co- channel interference is minimized.

DMS-MTX DualMode Metrocell Cell Site Description

Image 23
Contents DualMode Metrocell Page Page June Publication historyContents Appendices Power and Grounding RequirementsCell Site Components Datafilling a Metro Cell SiteList of tables Block diagram of a 120 Stsr Metrocell using one RF FramePage Intended audience for this publication About this documentApplicability of this publication How this publication is organizedCarrier RF List of termsBand Duplexer CellDBm DBWLoss FilterForward path IsolationReturn loss ModulationOmni DqpskSectorization Signal RFSector Stsr Northern Telecoms DualMode Metrocell IntroductionDigital ready cellular product System architecture of a DualMode MetrocellMetro RF Frame Basic components of a DualMode Metrocell Universal CE FrameChannel assignment Band a 416 channels Band B 416 channels 800 MHz cellular bandChannel assignment for 800 MHz cellular systems Introduction 6Introduction Standard 01.01 June Overview Cell Site ConfigurationsOmni configuration Omni N=7 frequency reuse plan Sectorized configuration120 N=7 sectorized frequency reuse plan 60 N=4 sectorized frequency reuse plan Cell Site Layouts Omni cell site configurationRF Frame Control Channel redundancyCell Site Layouts 4Cell Site Layouts TRU/DPA Transmit cabling6Cell Site Layouts Frames TRUs ATCs Receive cablingComponent requirement No.Stsr cell site configuration CE Frame RF Frame Block diagram of a 120 Stsr Metrocell using one RF FrameBlock diagram of a 120 Stsr Metrocell using three RF Frames 12Cell Site Layouts DPA 9 Port1 CCH ATC3 Port DPA 10 Port1 14Cell Site Layouts TRU/DPA ATC 16Cell Site Layouts Sector Sector Z Sector YSector Y TX/RX, 3 RX Sector W Stsr cell site connectionControl Channel Locate Channel Receiver Sector Sector U22Cell Site Layouts Block diagram of a 60 Stsr Metrocell with two RF Frames 24Cell Site Layouts Block diagram of a 60 Stsr Metrocell with four RF Frames 26Cell Site Layouts Transmit cabling 28Cell Site Layouts TRU/DPA 30Cell Site Layouts Port2 ATC3 Port DPA Port1 RF Frame 32Cell Site Layouts Receive cabling 34Cell Site Layouts Sector Y 36Cell Site Layouts Component requirement 38Cell Site Layouts Standard 01.01 June Major components of a DualMode Metrocell Description Cell Site ComponentsNTAX98AA FRU Customer Service Operations 4Cell Site Components Standard 01.01 June Safety requirements Power and Grounding RequirementsPower and grounding requirements Power and Grounding Requirements 4Power and Grounding Requirements Power distribution for the CE and RF Frames in a Metrocell Frame power distributionGrounding UL/CSA approval System power protectionCEC par DC coupled signals Cable Identification 10Power and Grounding Requirements Standard 01.01 June Datafill Overview Datafilling a Metro Cell SiteTable Acualm Table ClliCavities Fan Pwr Alarm PointsMetro RF Frame ATC Hsmo +27V a Port # Rip Connector J206Table VCHINV, CCHINV, Lcrinv Example of Metro TRU datafill Frequency Assignment ExampleIcrm Example of Metro ICRM/TRU hardwire configuration8Datafilling a Metro Cell Site Standard 01.01 June Radio Frequency Appendix a DualMode Metrocell Cell Site SpecificationsSystem Configuration Audio Interface AlarmsMechanical DC Power RequirementsPower Distribution Requirements Environmental PackagingTelecom Compliance Regulatory Electromagnetic EmissionsRadiated Emissions Product Safety =7 Frequency plan Band a Appendix B Frequency Plans=7 Frequency plan Band B =4 Frequency plan Band B =4 Frequency plan Band a10Frequency Plans Standard 01.01 June Page Cell Site Description