Omega Engineering TX801MInput Range Programming Table, How to Use the Maths Function Formulae

Page 4

TX801MInput Range Programming Table.

Always set OUTPUT range first, then INPUT range.

DIP switches and trimpots are accessed by removing the small rectangular lid on the top of the TX801M enclosure.

Notes: 1/ Switch status 1 = ON, 0 = OFF, X = DON'T CARE. 2/ All inputs must be of the same signal type.

3/ If using voltage inputs, short unused inputs to 'COM' (terminal 6).

 

 

INPUT RANGE

 

S4-1

S4-2

S4-3

S4-4

S4-5

S4-6

 

 

0~5V

 

0

0

0

0

1

1

 

Vin

0~10V

 

0

0

0

1

1

1

 

1~5V

 

0

0

0

0

0

0

 

 

 

 

 

2~10V

 

0

0

0

1

0

0

 

Iin

0~20mA

 

1

1

1

0

1

1

 

4~20mA

 

1

1

1

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

How to Use the Maths Function Formulae.

X, Y, and Z are taken as 0 to 1.0000, representing the full input range.

eg.

4.000mA

=

0.0000

 

8.000mA

=

0.2500

 

12.000mA

=

0.5000

 

16.000mA

=

0.7500

 

20.000mA

=

1.0000

The selected calculation is then performed on the inputs. The output is then SCALED so the resultant range is between 0 and 1.000. (The scaling factor is the factor the largest output must be scaled by to get the result = 1.) This 0 to 1.000 range represents the full output range, as set by the output DIP switches.

INPUT RANGES

MATHS FUNCTION

 

OUTPUT RANGES

 

Input

IR

Maths Funct. (Output =)

MF

Maths Funct. (Output =)

MF

Voltage

OR

Current

OR

0~5V

A

X + Y

1

Sample and Hold

 

26

0~500mV

A

0~1mA

1

0~10V

B

X + Y + Z

2

Tare

 

27

0~1V

B

0~2mA

2

1~5V

C

X - Y

3

 

 

28

0~2V

C

0~5mA

3

2~10V

D

X - Y + Z

4

%RH, X=Dry, Y=Wet

 

29

0~3V

D

0~10mA

4

0~20mA

E

X × Y

5

User Defined Curve

 

30

0~4V

E

0~16mA

5

4~20mA

F

X × Y × Z

6

Program User Defined Curve

 

31

0~5V

F

0~20mA

6

 

 

X / Y

7

Pressure Comp. Steam Flow

 

32

0~6V

G

1~5mA

7

 

 

( X / Y ) × Z

8

Program PCSF Values

 

33

0~8V

H

2~10mA

8

 

 

X^(1/2) {Square root X}

9

Hi Select of X or Y

 

34

0~10V

I

4~20mA

9

 

 

X^(1/3) {Cube root X}

10

Lo Select of X or Y

 

35

0~12V

J

-1~1mA

10

 

 

X^(3/2)

11

 

 

36

1~5V

K

-2~2mA

11

 

 

X2

12

 

 

37

2~10V

L

-5~5mA

12

 

 

X3

13

 

 

38

-1~1V

M

-10~10mA

13

 

 

ln X {Natural log X}

14

 

 

39

-2~2V

N

-20~20mA

14

 

 

log X {Base 10 log X}

15

 

 

40

-5~5V

O

 

 

 

 

(X2 + Y2)^(1/2)

16

 

 

41

-10~10V

P

 

 

 

 

( X + Y ) / 2

17

 

 

42

-12~12V

Q

 

 

 

 

( X + Y + Z ) / 3

18

 

 

43

 

 

 

 

 

 

X^1.569 {Parshall Flume}

19

 

 

44

 

 

 

 

 

 

X^(5/2) {V Notch Weir}

20

 

 

45

 

 

 

 

 

 

X {ie Xin=Xout}

21

 

 

46

 

 

 

 

 

 

Inverse of X {ie.(100-X)%}

22

 

 

47

 

 

 

 

 

 

X / ( X + Y )

23

 

 

48

 

 

 

 

 

 

Antilog X

24

 

 

49

 

 

 

 

 

 

( X - Y ) x Z

25

 

 

50

 

 

 

 

Special Input

Z

 

 

 

 

 

Special Output Range

Z

 

 

Note: Hi Select and Lo Select available from S/No. 9844000 onwards.

 

 

 

 

 

 

POWER SUPPLY

 

 

 

 

PS

 

 

High Voltage Power Supply: 70~270Vac and 80~380Vdc

 

 

 

H

 

 

Mid Voltage Power Supply: 24~80Vac and 20~90Vdc

 

 

 

M

 

 

Low Voltage Power Supply: 8~30Vac and 8~30Vdc

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

Note: Power supply H is field selectable for M, and M for H. Power supply L must be ordered separately.

Examples of Using the Maths Function Formulae.

NOTE: For these examples inputs and outputs are configured as 4~20mA.

 

Examples

 

 

Inputs (mA)

Converted Value

 

Resultant

Scaling

Output

 

 

 

 

X

Y

Z

X

Y

Z

 

Value

Factor

Signal (mA)

 

 

 

 

 

 

 

 

 

 

4

4

-

0.0

0.0

-

 

0

 

4.00

 

 

X + Y

12

12

-

0.5

0.5

-

 

1

.5

12.00

 

 

 

20

20

-

1.0

1.0

-

 

2

 

20.00

 

Examples of Input Connection.

 

 

Transducer With Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or Voltage Output.

+

 

3

Xin

Input

Output

-

 

2

 

 

 

 

 

 

 

 

 

~

 

 

 

 

 

Transducer With Current

 

 

 

 

 

 

 

 

Transducer With Current

 

4

Yin

 

 

 

+

1

 

 

 

or Voltage Output.

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or Voltage Output.

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Zin

 

Power Supply

-

8

 

 

 

 

 

 

 

 

 

COM

 

~

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1600V Isolation

 

Eg. Indicator, 2100-M,

-

+

etc. With Voltage or

Current Input.

 

 

 

 

 

 

~

AC/DC Power

-

~Source.

+

Terminations.

Output

1

+Ve

 

2

-Ve

Input

3

Xin

 

4

Yin

 

5

Zin

 

6

COM

P/S

7

~AC/+DC

 

8

~AC/-DC

Plan View of TX801M Adjustments.

TX801M H1 Power Supply Link Settings.

 

 

 

4

4

4

0.0

0.0

0.0

 

 

0

 

4.00

 

 

X x Y x Z

 

12

12

12

0.5

0.5

0.5

 

 

0.0156

1

4.25

 

 

16

16

16

0.75

0.75

0.75

0.4219

10.75

 

 

 

 

 

 

 

 

20

20

20

1.0

1.0

1.0

 

 

1

 

20.00

 

 

 

 

4

-

-

0.0

-

-

 

 

0

 

4.00

 

 

 

 

8

-

-

0.25

-

-

 

 

0.5

 

12.00

 

 

X^(1/2)

 

12

-

-

0.5

-

-

 

 

0.7071

1

15.31

 

 

 

 

16

-

-

0.75

-

-

 

 

0.8660

 

17.86

 

 

 

20

-

-

1.0

-

-

1

 

20.00

 

 

 

 

4

-

-

0.0

-

-

 

 

0

 

4.00

 

 

 

 

8

-

-

0.25

-

-

 

 

0.0625

 

5.00

 

 

X2

 

12

-

-

0.5

-

-

 

 

0.25

1

8.00

 

 

 

 

16

-

-

0.75

-

-

 

 

0.5625

 

13.00

 

 

 

 

20

-

-

1.0

-

-

 

 

1

 

20.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUTPROGRAMMING

 

 

 

 

 

 

 

 

 

 

 

OFF

ON

 

 

 

 

 

 

ON

Gain = 1

Gain = 0

 

 

 

 

 

 

1

 

 

 

 

 

Gain = 2

Gain = 0

 

 

 

 

 

 

2

 

 

 

 

 

Gain = 4

Gain = 0

 

 

 

 

 

 

3

 

 

 

 

 

Gain = 8

Gain = 0

 

 

 

 

 

 

4

 

 

 

 

 

Gain =16

Gain = 0

 

 

 

 

 

 

5

 

 

 

 

 

Gain =32

Gain = 0

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 Turn Trimpot

 

 

 

 

 

 

 

 

for Span ±10%

 

 

 

 

 

 

Span

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 Turn Trimpot

 

 

 

 

 

 

for Zero ±10%

 

 

 

 

 

 

Zero

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OFF

 

ON

 

 

 

 

ON

0% Offset

 

+20% Offset

 

 

 

 

 

 

1

 

 

 

 

 

0% Offset

 

-50% Offset

 

 

 

 

 

 

2

 

 

 

 

 

Current O/P

Voltage O/P

 

 

 

 

 

 

3

 

 

 

 

 

Current O/P

Voltage O/P

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S1-Span

 

S4-Input

 

 

 

 

 

S

 

COMMS

 

 

 

 

 

Z

 

 

 

 

 

 

 

 

 

S2-Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INPUT PROGRAMMING

OFF

ON

6}20% Offset }No Offset.

41/2 Scale in Full Scale in

3Zin=Voltage Zin=Current

2Yin=VoltageYin=Current

1Xin=VoltageXin=Current

ON

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET

6

 

 

 

Refer to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

'MATHSFUNCTION

 

 

 

 

 

 

Maths-S3

 

4

 

 

 

PROGRAMMINGTABLE'

 

 

 

 

ON

 

 

 

 

 

 

 

3

 

 

 

for Dip Switch Settings

 

 

 

2

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WARNING: High Voltages Maybe Present.

 

Only adjust link with power disconnected.

 

 

 

 

 

Power Supply Link Settings

 

 

 

H1

Power Supply Voltage Range

 

 

HLink for High: 70~270Vac / 80~380Vdc

M Link for Mid: 24~80Vac / 20~90Vdc

Notes:

1/ H1 is approx 4cm (1½") behind the 'S' trimpot. 2/ Exceeding voltage ranges may damage the unit.

3/ Ensure the enclosure label is correctly labelled for the link position.

4/ Adjust H1 jumper with a pair of needle nose pliers.

5/ Low Voltage Power Supply version is fixed, and has no link. This must be ordered separately.

H 1

M I D

H I G H

M

H

 

M

 

 

S 1 - SP A N S Z S 2 - F U N C T

 

H

Image 4
Contents Temperature PH/CONDUCTIVITYOmega.comTM USAFeatures TX801M SpecificationsDimensions and Mounting Proper Installation & Maintenance of TX801MHow to Use the Maths Function Formulae Examples of Using the Maths Function FormulaeTX801MInput Range Programming Table Examples of Input Connection

TX801M specifications

Omega Engineering's TX801M is a highly versatile and sophisticated temperature transmitter designed for various industrial applications. Known for its robustness and reliability, the TX801M enables precise temperature measurement and monitoring, making it an essential tool for process control in different environments.

One of the main features of the TX801M is its ability to accept various input types, including thermocouples, RTDs (Resistance Temperature Detectors), and linear signals, such as 0-10V and 4-20mA. This flexibility allows the transmitter to be easily integrated into existing systems without requiring significant modifications, thus streamlining the process of upgrading monitoring and control capabilities.

The TX801M boasts advanced digital signal processing technology, which enhances its accuracy and reliability. With an impressive accuracy level of ±0.1%, users can trust that the temperature readings are precise, reducing the risk of costly errors in process management. The device also offers a wide temperature range, enabling it to operate effectively in extreme conditions, including cryogenic applications and elevated temperatures.

Another notable characteristic of the TX801M is its user-friendly design. The device features a simple configuration process that can be easily managed via its intuitive interface. A built-in LCD display provides real-time readings and diagnostics, giving users immediate access to critical information. Additionally, the unit supports various communication protocols, such as HART, Modbus, and CANopen, facilitating seamless integration into diverse industrial environments.

The rugged construction of the TX801M ensures durability and longevity, even in harsh environments. Its housing is designed to withstand mechanical stress, moisture, and exposure to aggressive chemicals. This durability makes it suitable for a wide range of applications, including petrochemical processing, food and beverage production, and pharmaceuticals.

In terms of energy efficiency, the TX801M operates with low power consumption, making it an environmentally friendly choice. Its design also includes features for enhanced electromagnetic compatibility, thus minimizing interference and ensuring reliable operation in electrically noisy environments.

Overall, Omega Engineering's TX801M temperature transmitter stands out for its combination of flexibility, accuracy, durability, and ease of use. Its advanced features make it an ideal choice for professionals seeking reliable temperature monitoring and control solutions across various industrial settings.