
•The values in the above tables can be used inside of expressions the same way you use variables.
uLinear Regression
•The regression formula for linear regression is: y = A + Bx.
•Example: Atmospheric Pressure vs. Temperature
Temperature | Atmospheric | Perform linear regression to de- | |||||
Pressure | termine the regression formula | ||||||
| |||||||
10°C | 1003 hPa | ||||||
terms and correlation coefficient | |||||||
15°C | 1005 hPa | ||||||
for the data nearby. Next, use | |||||||
20°C | 1010 hPa | ||||||
the regression formula to esti- | |||||||
25°C | 1011 hPa | ||||||
mate atmospheric pressure at | |||||||
30°C | 1014 hPa | ||||||
18°C and temperature at 1000 | |||||||
|
| ||||||
|
| hPa. Finally, calculate the coeffi- | |||||
|
| cient of determination (r2) and | |||||
|
| sample covariance | |||||
|
|
|
|
|
| . | |
|
|
|
In the REG Mode: |
| |
1(Lin) |
| |
AB1(Scl) =(Stat clear) | REG | |
10 P1003 S n= | ||
1. |
Each time you press Sto register your input, the number of data input up to that point is indicated on the display (n value).
15 P 1005 S
20 P1010 S 25 P1011 S
30 P1014 S
Regression Coefficient A = 997.4 | A Xrr 1= |
Regression Coefficient B = 0.56 | A Xrr 2= |
Correlation Coefficient r = 0.982607368 | A Xrr 3= |
Atmospheric Pressure at 18°C = 1007.48 |
|
18 AXr rr 2=
Temperature at 1000 hPa = 4.642857143