Chapter 3 Channelized T3 Trunk Card

Configuring the CT3 Trunk Card

A typical T3 controller configuration in a running-configuration file appears as follows:

T3 controller

configuration:

----------------------------

controller T3

1/0/0

framing m23

clock source line cablelength 224 t1 1 controller t1 2 controller t1 3 controller t1 4 controller t1 5 controller t1 6 controller t1 7 controller t1 8 controller t1 9 controller t1 10 controller t1 11 controller t1 12 controller t1 13 controller t1 14 controller t1 15 controller t1 16 controller t1 17 controller t1 18 controller t1 19 controller t1 20 controller t1 21 controller t1 22 controller t1 23 controller t1 24 controller t1 25 controller t1 26 controller t1 27 controller t1 28 controller

A typical T1 controller configuration appears as follows:

T1 controller configuration:

----------------------------

controller T1 1/0/0:1 framing esf

pri-group timeslots 1-24 controller T1 1/0/0:2 channel-group 0 timeslots 1-24

.

.

.

controller T1 1/1/0:28 cas-group 0 timeslots 1-24

Cisco AS5800 Universal Access Server Dial Shelf Card Guide

3-16

78-7097-03

 

 

Page 16
Image 16
Cisco Systems AS5800 manual Typical T1 controller configuration appears as follows

AS5800 specifications

Cisco Systems has long been a leader in the networking and telecommunications field, and its AS5800 series of routers exemplify this tradition. The AS5800, along with the AS5850, AS5350, AS5400, and AS5300, provides robust solutions for service providers and enterprise-level networking applications. Each of these models has distinct features and characteristics that cater to the evolving demands of internet traffic and data processing.

The Cisco AS5800 is designed for high-capacity routing and optimized for broadband services. It supports a wide range of services, including voice, data, and video applications, making it a versatile option for service providers looking to deliver integrated solutions. It is equipped with advanced quality of service (QoS) features that ensure bandwidth is allocated effectively, holding strong even under heavy traffic conditions.

In comparison, the AS5850 offers superior processing capabilities and is typically utilized in larger-scale implementations. This model supports high-density interfaces, allowing numerous connections without compromising performance. Its architecture includes enhanced MPLS (Multiprotocol Label Switching) support, enabling more efficient traffic management and better utilization of network resources.

The AS5350 is known for its scalability and energy efficiency, ideal for voice-over-IP (VoIP) and media gateway applications. It supports various telephony features, such as protocol interworking and transcoding, making it a preferred choice for organizations focusing on digital voice technologies. The AS5300, while slightly older, continues to be a valuable asset for less demanding networks, offering reliable performance with VoIP capabilities and basic data applications.

The AS5400 bridges the gap between high-performance routing and operational efficiency. It incorporates Cisco's proprietary technologies to ensure seamless connectivity and robust failover systems. This model is highly regarded for its security features, protecting network integrity and providing peace of mind for businesses relying on sensitive data transfer.

Overall, Cisco’s AS5800 series showcases a progressive evolution of routing capabilities with enhanced features tailored for resilience, scalability, and performance. These routers not only address the technical needs of modern networks but also strategically position organizations for future growth in an increasingly digital world. Each model, with its unique attributes, continues to support the varied demands of global communication infrastructures.