INTERFACECOMMANDS

Write Multiple

Performs similarly to the Write Sector(s) command, except that:

1.The controller sets BSY immediately upon receipt of the command,

2.Data transfers are multiple sector blocks and

3.The Long bit and Retry bit is not valid.

Command execution differs from Write Sector(s) because:

1.Several sectors transfer to the host as a block without intervening interrupts.

2.DRQ qualification of the transfer is required at the start of the block, not on each sector.

The block count consists of the number of sectors to be transferred as a block and is programmed by the Set Multiple Mode command, which must be executed prior to the Write Multiple command. When the Write Multiple command is issued, the Sector Count register contains the number of sectors requested — not the number of blocks or the block count.

If the number of sectors is not evenly divisible by the block count, as many full blocks as possible are transferred, followed by a final, partial block transfer. This final, partial block transfer is for N sectors, where N = (sector count) modulo (block count)

The Write Multiple operation will be rejected with an Aborted Command error if attempted:

1.Before the Set Multiple Mode command has been executed, or

2.When Write Multiple commands are disabled.

All disk errors encountered during Write Multiple commands report after the attempted disk write of the block or partial block in which the error occurred.

The write operation ends with the sector in error, even if it was in the middle of a block. When an error occurs, subsequent blocks are not transferred. When DRQ is set at the beginning of each full and partial block, interrupts are generated.

Write DMA

Multi-word DMA

Identical to the Write Sector(s) command, except that:

1.The host initializes a slave-DMA channel prior to issuing the command,

2.Data transfers are qualified by DMARQ and are performed by the slave-DMA channel and

3.The drive issues only one interrupt per command to indicate that data transfer has terminated at status is available.

Ultra DMA

With the Ultra DMA Write protocol, the control signal (HSTROBE) that latches data from DD(15:0) is generated by the devices which drives the data onto the bus. Ownership of DD(15:0) and this data strobe signal are given to the host for an Ultra DMA data out burst.

During an Ultra DMA Write burst, the host always moves data onto the bus, and, after a sufficient time to allow for propagation delay, cable settling, and setup time, the sender shall generate a HSTROBE edge to latch the data. Both edges of HSTROBE are used for data transfers.

Any error encountered during Write DMA execution results in the termination of data transfer. The drive issues an interrupt to indicate that data transfer has terminated and status is available in the error register. The error posting is the same as that of the Write Sector(s) command.

7 – 5

Page 53
Image 53
Maxtor 92732U8, 91024U3, 90683U2, 92049U6, 91366U4, 91707U5 manual Write Multiple, Write DMA

91024U3, 92049U6, 90683U2, 91707U5, 92732U8 specifications

The Maxtor series of hard drives, specifically the models 91366U4, 92732U8, 91707U5, 90683U2, and 92049U6, exemplify the evolution of storage technology during the late 1990s and early 2000s, pivotal in shaping contemporary data storage solutions. These hard drives are recognized for their reliability, performance, and impressive capacities for their time.

The Maxtor 91366U4 features a storage capacity of 13.6 GB, delivering a spindle speed of 5,400 RPM. Its UATA interface allows for a fast data transfer rate, which was notable in its category. The model incorporates Advanced Power Management, contributing to lower power consumption and reduced heat generation, making it an appealing choice for system builders looking to enhance system longevity.

Moving on to the Maxtor 92732U8, this model increased capacity to 27.3 GB, aligning with the growing demand for more storage from users and businesses alike. This drive maintained a 5,400 RPM spindle speed while improving the access times, which aided in speeding up file retrieval processes. Noteworthy is its Plug and Play capability, which simplified installation and compatibility across various systems.

The Maxtor 91707U5 brought forward advancements in data integrity with the inclusion of features such as error correction codes. With a storage size of 17.3 GB and similar operational speeds, this model catered to users seeking reliable data management. Its robust build aimed to protect against accidents and environmental factors, ensuring data was safe while providing consistent performance.

The Maxtor 90683U2, with its 68.3 GB capacity, is particularly recognized for its reliability in desktop applications. The drive integrates a combination of Unidirectional Technology, driving advancements in read/write capabilities, and extensive shock protection, making it an ideal candidate for users with intensive data processing requirements.

Lastly, the Maxtor 92049U6 is known for its balanced blend of performance and functionality. Holding a capacity of 49.1 GB and retaining the sophisticated features of its predecessors, this model enabled faster data access and storage capabilities that met the needs of both home and professional users.

Together, these Maxtor hard drives embody the technological strides in the evolution of data storage—offering capacities and performances that set a standard in the industry and laid the groundwork for future storage solutions. The combination of innovative technologies and practical features made these drives highly sought after during their respective periods, and their legacy continues to influence modern data storage products.