Use phone voice commands

1From the home screen, select Voice Commands (or press and hold Green button).

Say the phone voice

command

2Follow phone voice prompts to place call.

Use car kit dialing

1From the home screen, select Dial Number.

2Using scroll knob, locate and select numbers to dial.

Note: To clear a digit, press Red button. To clear all digits, press and hold Red button until you hear a tone.

3Press the Green key to call.

Use last number redial

To redial last number, press Green button to view recent call list, then press Green button again to select the number to redial. If list has only one number, a single press of the Green button dials the last number.

Use phone dialing

You can dial a hands-free call directly from your phone in the normal manner.

While on a call

To...

adjust volume

turn scroll knob

end call

press Red button

 

 

 

 

 

 

 

 

 

 

mute/unmute call

press

 

 

 

, then select Mute (or

 

 

 

 

 

Unmute), or press

 

 

 

 

 

 

 

Use recent call list

1From the home screen, select Recent Calls (or press Green button).

Note: If recent call list is empty, the last number is redialed.

2Using the scroll knob, locate and select name/number you want to call (or locate and press Green button).

make a second call from same phone

Press .

Select Make Call

Select Phonebook, Recent Calls, or Dial Number

Calls 19

Page 21
Image 21
Motorola 68014301013, TK30 manual Say the phone voice Command, While on a call

TK30, 68014301013 specifications

The Motorola 68014301013, also known as the TK30, represents a remarkable piece of technology in the realm of computing microprocessors. This chip, launched during an era of rapid technological advancement in the 1980s, was instrumental in the development of powerful and efficient computing systems, redefining performance metrics in its time.

One of the key features of the TK30 is its compatibility with the Motorola 68000 architecture, which was renowned for its thorough instruction set and operational efficiency. The TK30 extends this legacy, providing enhanced processing capabilities and improved instructions for complex computations. This compatibility allowed software developed for earlier Motorola processors to run seamlessly on the TK30, giving it an edge in versatility.

The TK30 boasts a 32-bit data bus and a 24-bit address bus, facilitating access to a significantly larger memory space, which is crucial for running advanced applications and managing more substantial datasets. This expanded memory capability was particularly beneficial for developers looking to create sophisticated software solutions or for companies looking to improve their computing power without overhauling their existing systems.

Another remarkable characteristic of the TK30 is its support for multitasking. As the demands for processor efficiency grew, the TK30 was designed to handle multiple operations simultaneously, allowing for smoother and faster execution of applications. This multitasking capability made it a preferred choice for various operating systems, further broadening its appeal in the computing market.

Power management is also a critical aspect of the TK30’s design. The processor employs advanced power-saving features, which help in reducing overall energy consumption, making it a suitable option for embedded systems where power usage is a crucial concern. This focus on energy efficiency aligns with contemporary demands for sustainability and longevity in electronic products.

In summary, the Motorola 68014301013, or TK30, is not merely a microprocessor; it is a versatile, powerful technology that has stood the test of time. With its robust compatibility with legacy systems, impressive memory capabilities, multitasking support, and energy efficiency, the TK30 continues to be relevant in discussions of historical computing innovations, symbolizing an era where microprocessor technology began to pivot towards the complexities of modern computing. Its influence can still be felt as the foundations it laid helped shape the trajectory of future processor designs and computing technologies.