Aluminum Electrolytic Capacitor

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

L o c a l l a w s m a y h a v e s p e c i f i c d i s p o s a l requirements which must be followed.

The application guidelines above are taken from:

Technical Report EIAJ RCR-2367 issued by the Japan Electronic Industry Association, Inc. -

Guideline of notabilia for aluminium electrolytic capacitors with non-solid electrolytic for use in electronic equipment.

Refer to this Technical Report for additional details.

Design, Specifications are subject to change without notice. Ask factory for technical specifications before purchase and/or use. Whenever a doubt about safety arises from this product, please inform us immediately for technical consulation without fail.

Mar. 2005

EE22

Page 10
Image 10
Panasonic EE26 dimensions Capacitor Disposal, EE22

EE26 specifications

The Panasonic EE26 is a cutting-edge battery solution that exemplifies innovation and efficiency in power storage technology. Designed for a wide range of applications, including consumer electronics, renewable energy systems, and electric vehicles, the EE26 boasts several main features that distinguish it from conventional battery options.

One of the standout characteristics of the EE26 is its high energy density. This allows the battery to store more energy in a compact size, making it an ideal choice for portable devices that require lightweight and efficient energy sources. The design incorporates advanced lithium-ion technology, which has become a standard in the industry due to its superior performance and longevity.

Another key feature of the Panasonic EE26 is its rapid charging capability. With optimized internal architecture, the battery can achieve significant charge levels in a fraction of the time compared to traditional batteries. This is particularly beneficial for users who need fast power replenishment without lengthy downtimes, such as in electric vehicles or in emergency backup power systems.

Durability and reliability are also paramount in the EE26's design. Panasonic engineers have included robust thermal management systems that reduce the risk of overheating and extend the overall lifespan of the battery. Additionally, the battery is built with high-quality materials that are resistant to wear and degradation, ensuring consistent performance over time.

Safety is a critical component of the EE26's architecture. It is equipped with multiple safety features, including overcharge protection, short circuit protection, and built-in thermal fuses. These safety mechanisms work in tandem to minimize risks during operation, making the EE26 a secure option for both personal and professional use.

Moreover, the Panasonic EE26 is tailored for sustainability. Its manufacturing processes align with environmental standards, and the materials used are designed to be recyclable, contributing to reduced ecological impact. This commitment to sustainability is a growing concern for consumers and manufacturers, pushing Panasonic to lead in green technologies.

In summary, the Panasonic EE26 is a versatile battery solution that integrates high energy density, rapid charging, durability, safety, and sustainability into its design. Whether powering everyday gadgets or advanced technologies, the EE26’s innovations reflect Panasonic's dedication to enhancing battery performance to meet the demands of a rapidly evolving world.