The drive firmware error recovery algorithms consist of 12 levels for read recoveries and five levels for write. Each level may consist of multiple steps, where a step is defined as a recovery function involving a single re- read or re-write attempt. The maximum level used by the drive in LBA recovery is determined by the read and write retry counts.

Table 5 equates the read and write retry count with the maximum possible recovery time for read and write recovery of individual LBAs. The times given do not include time taken to perform reallocations. Reallocations are performed when the ARRE bit (for reads) or AWRE bit (for writes) is one, the RC bit is zero, and the recov- ery time limit for the command has not yet been met. Time needed to perform reallocation is not counted against the recovery time limit.

When the RC bit is one, reallocations are disabled even if the ARRE or AWRE bits are one. The drive will still perform data recovery actions within the limits defined by the Read Retry Count, Write Retry Count, and Recovery Time Limit parameters. However, the drive does not report any unrecovered errors.

Table 5: Read and write retry count maximum recovery times

 

Maximum recovery time per

Read retry count

LBA (cumulative, ms)

 

 

 

 

0

108.29

 

 

1

124.95

 

 

2

424.83

 

 

3

458.15

 

 

4

483.14

 

 

5

590.16

 

 

6

644.92

 

 

7

711.56

 

 

8

898.54

 

 

9

1049.49

 

 

10

1116.13

 

 

11

1174.44

 

 

12 (default)

2311.47

 

 

Write retry count

Maximum recovery time per

LBA (cumulative, ms)

 

 

0

23.94

 

 

1

35.91

 

 

2

55.86

 

 

3

67.83

 

 

4

119.79

 

 

5 (default)

147.72

 

 

Setting these retry counts to a value below the default setting could result in degradation of the unrecovered error rate. For example, suppose the read/write recovery page has the RC bit = 0, the read retry count set to 4, and the recovery time limit set to 450. A 4-block read command can take up to 483.14ms recovery time for each block and a maximum of 450ms recovery for all four blocks. If either of these limits is reached and a block has not yet been recovered, the command will end with Check Condition status and an unrecoverable read error will be reported.

10.3SAS system errors

Information on the reporting of operational errors or faults across the interface is given in the SAS Interface Manual. The SSP Response returns information to the host about numerous kinds of errors or faults. The Receive Diagnostic Results reports the results of diagnostic operations performed by the drive.

Status returned by the drive to the initiator is described in the SAS Interface Manual. Status reporting plays a role in systems error management and its use in that respect is described in sections where the various com- mands are discussed.

46

Constellation ES Series SAS Product Manual, Rev. F

Page 54
Image 54
Seagate ST32000444SSIM, ST1000NM0063, ST1000NM0043, ST2000NM0033, ST2000NM0023, ST2000NM0043, ST2000NM0053 SAS system errors

ST4000NM0053, ST4000NM0023, ST32000444SSIM, ST32000646NS, ST3000NM0063 specifications

Seagate is a prominent name in the storage industry, renowned for its high-performance hard disk drives (HDDs). Among its popular enterprise offerings are models like the ST2000NM0043, ST32000645NS, ST3000NM0043, ST2000NM0033, and ST2000NM0023, which cater to various data center and server needs.

The Seagate ST2000NM0043 is a 2TB 7200 RPM SATA drive designed for high availability and performance in enterprise environments. It features a 128MB cache, ensuring efficient data transfer speeds and quick access to frequently used data. This model boasts a mean time between failures (MTBF) of 1.4 million hours, emphasizing its reliability for continuous operation in demanding applications.

The ST32000645NS, offering 2TB of storage and a 7200 RPM spindle speed, is ideal for environments where large amounts of data need to be stored and accessed quickly. It supports SAS interfaces, providing enhanced data integrity and improved system performance. With its aggressive power management features, this model strikes a balance between performance and energy efficiency, making it suitable for both traditional data centers and cloud applications.

The ST3000NM0043 stands out with a capacity of 3TB, further addressing the growing need for more substantial storage solutions. Like its counterparts, it operates at 7200 RPM and is equipped with advanced caching mechanisms that help enhance overall performance. Its high durability and enterprise-grade features make it a preferred choice for storage-intensive applications.

The ST2000NM0033 focuses on delivering storage solutions for environments needing both capacity and reliability. With its 2TB capacity and 7200 RPM rotation speed, it provides an effective solution for businesses looking to balance workload and storage needs without compromising performance. This model also features Seagate's advanced technology that optimizes workflow and minimizes latency.

Lastly, the ST2000NM0023 mirrors many of the features found in its siblings, offering a 2TB capacity and optimized for high reliability and performance. With Seagate's commitment to innovating in the HDD space, features such as self-monitoring, analysis, and reporting technology (SMART) help maintain the drive's health and prevent potential failures.

In conclusion, Seagate's range of HDDs, exemplified by the ST2000NM0043, ST32000645NS, ST3000NM0043, ST2000NM0033, and ST2000NM0023, reflects a dedication to providing robust, high-capacity storage solutions. Their advanced technologies, reliability ratings, and performance features make them ideal choices for enterprise environments demanding efficiency and durability.