If write caching is enabled (WCE=1), then the drive may return GOOD status on a write command after the data has been transferred into the cache, but before the data has been written to the medium. If an error occurs while writing the data to the medium, and GOOD status has already been returned, a deferred error will be generated.

The Synchronize Cache command may be used to force the drive to write all cached write data to the medium. Upon completion of a Synchronize Cache command, all data received from previous write commands will have been written to the medium.

Tables 7, 8, and 9 show Mode default settings for the drives.

4.5.2Prefetch operation

If the Prefetch feature is enabled, data in contiguous logical blocks on the disc immediately beyond that which was requested by a Read command can be retrieved and stored in the buffer for immediate transfer from the buffer to the host on subsequent Read commands that request those logical blocks (this is true even if cache operation is disabled). Though the prefetch operation uses the buffer as a cache, finding the requested data in the buffer is a prefetch hit, not a cache operation hit. Prefetch is enabled using Mode Select page 08h, byte 12, bit 5 (Disable Read Ahead - DRA bit). DRA bit = 0 enables prefetch. Since data that is prefetched replaces data already in some buffer segment(s), the host can limit the amount of prefetch data to optimize system per- formance. The max prefetch field (bytes 8 and 9) limits the amount of prefetch. The drive does not use the Prefetch Ceiling field (bytes 10 and 11).

During a prefetch operation, the drive crosses a cylinder boundary to fetch more data only if the Discontinuity (DISC) bit is set to one in bit 4 of byte 2 of Mode parameters page 08h.

Whenever prefetch (read look-ahead) is enabled (enabled by DRA = 0), it operates under the control of ARLA (Adaptive Read Look-Ahead). If the host uses software interleave, ARLA enables prefetch of contiguous blocks from the disc when it senses that a prefetch hit will likely occur, even if two consecutive read operations were not for physically contiguous blocks of data (e.g., “software interleave”). ARLA disables prefetch when it decides that a prefetch hit will not likely occur. If the host is not using software interleave, and if two sequential read operations are not for contiguous blocks of data, ARLA disables prefetch, but as long as sequential read operations request contiguous blocks of data, ARLA keeps prefetch enabled.

4.5.3Optimizing cache performance for desktop and server applications

Desktop and server applications require different drive caching operations for optimal performance. This means it is difficult to provide a single configuration that meets both of these needs. In a desktop environment, you want to configure the cache to respond quickly to repetitive accesses of multiple small segments of data without taking the time to “look ahead” to the next contiguous segments of data. In a server environment, you want to configure the cache to provide large volumes of sequential data in a non-repetitive manner. In this case, the ability of the cache to “look ahead” to the next contiguous segments of sequential data is a good thing.

The Performance Mode (PM) bit controls the way the drive switches the cache buffer into different modes of segmentation. In “server mode” (PM bit = 0), the drive can dynamically change the number of cache buffer segments as needed to optimize the performance, based on the command stream from the host. In “desktop mode” (PM bit = 1), the number of segments is maintained at the value defined in Mode Page 8, Byte 13, at all times (unless changed by using a Mode Select command). For additional information about the PM bit, refer to the Unit Attention Parameters page (00h) of the Mode Sense command (1Ah) in the SCSI Interface Product Manual, part number 75789509.

Cheetah 10K.7 SCSI Product Manual, Rev. D

15

Page 25
Image 25
Seagate ST3300007LW/LC, ST3146707LW/LC, ST373207LW/LC manual Prefetch operation

ST3300007LW/LC, ST373207LW/LC, ST3146707LW/LC specifications

Seagate's ST3146707LW/LC, ST373207LW/LC, and ST3300007LW/LC are part of the company's renowned line of hard disk drives (HDDs), specifically designed for enterprise and high-performance computing environments. With their reliability and performance, these drives have become popular choices for data centers and critical applications requiring extensive storage capabilities.

One of the standout features of these models is their capacity to handle large volumes of data. The ST3146707LW/LC has a capacity of 146GB, while the ST373207LW/LC offers 73GB, and the ST3300007LW/LC comes with a substantial 300GB. These capacities make them well-suited for applications that require not only high storage space but also rapid access to data.

In terms of performance, these drives utilize a 10,000 RPM spindle speed, which significantly enhances data access times and overall performance. The combination of fast rotational speeds with Seagate's advanced caching algorithms allows for swift data retrieval, making these drives ideal for environments where speed is crucial.

These HDDs also employ the SCSI (Small Computer System Interface) interface, which promises high data transfer rates and reliability in enterprise-level applications. The Ultra320 SCSI interface can support transfer rates up to 320 MB/s, ensuring that the drives can efficiently communicate with other system components.

Another key technology featured in these models is Seagate's Adaptive Error Correction technology, which enhances data integrity and reliability. This feature helps in the detection and correction of errors that can occur during data transfer, reducing the risk of data loss.

Performance consistency is critical in enterprise environments, and these drives are built to endure the demands of 24/7 operation. They are designed with robust mechanisms to withstand temperature fluctuations, shock, and vibrations commonly found in data center settings.

In summary, the Seagate ST3146707LW/LC, ST373207LW/LC, and ST3300007LW/LC hard drives exemplify advanced features and technologies tailored for enterprise storage solutions. With significant capacities, impressive spindle speeds, SCSI connectivity, and reliability-focused technologies, these drives remain a valuable asset for businesses relying on stable and high-performance data storage.