Caution. The drive motor must come to a complete stop prior to changing the plane of operation. This time is required to insure data integrity.

6.2.4S.M.A.R.T.

S.M.A.R.T. is an acronym for Self-Monitoring Analysis and Reporting Technology. This technology is intended to recognize conditions that indicate imminent drive failure and is designed to provide sufficient warning of a failure to allow you to back up the data before an actual failure occurs.

Note. The drive’s firmware monitors specific attributes for degradation over time but can’t predict instanta- neous drive failures.

Each monitored attribute has been selected to monitor a specific set of failure conditions in the operating performance of the drive and the thresholds are optimized to minimize “false” and “failed” predictions.

Controlling S.M.A.R.T.

The operating mode of S.M.A.R.T. is controlled by the DEXCPT and PERF bits on the Informational Exceptions Control mode page (1Ch). Use the DEXCPT bit to enable or disable the S.M.A.R.T. feature. Setting the DEXCPT bit disables all S.M.A.R.T. functions. When enabled, S.M.A.R.T. collects on-line data as the drive performs normal read and write operations. When the PERF bit is set, the drive is considered to be in “On-line Mode Only” and will not perform off-line functions.

You can measure off-line attributes and force the drive to save the data by using the Rezero Unit command. Forcing S.M.A.R.T. resets the timer so that the next scheduled interrupt is in one hour.

You can interrogate the drive through the host to determine the time remaining before the next scheduled measurement and data logging process occurs. To accomplish this, issue a Log Sense command to log page 0x3E. This allows you to control when S.M.A.R.T. interruptions occur. Forcing S.M.A.R.T. with the RTZ command resets the timer.

Performance impact

S.M.A.R.T. attribute data is saved to the disk so that the events that caused a predictive failure can be recreated. The drive measures and saves parameters once every one hour subject to an idle period on the drive interfaces. The process of measuring off-line attribute data and saving data to the disk is interruptable. The maximum on-line only processing delay is summarized below:

Maximum processing delay

 

 

On-line only delay

Fully-enabled delay

 

DEXCPT = 0, PERF = 1

DEXCPT = 0, PERF = 0

S.M.A.R.T. delay times

210 ms

75 ms

Reporting control

Reporting is controlled by the MRIE bits in the Informational Exceptions Control mode page (1Ch). An example, if the MRIE is set to one, the firmware will issue to the host an 01-5D00 sense code. The FRU field contains the type of predictive failure that occurred. The error code is preserved through bus resets and power cycles.

Determining rate

S.M.A.R.T. monitors the rate at which errors occur and signals a predictive failure if the rate of degraded errors increases to an unacceptable level. To determine rate, error events are logged and compared to the number of total operations for a given attribute. The interval defines the number of operations over which to measure the rate. The counter that keeps track of the current number of operations is referred to as the Interval Counter.

16

Constellation ES.2 SAS Product Manual, Rev. D

Page 24
Image 24
Seagate ST33000652SS manual 4 S.M.A.R.T, Controlling S.M.A.R.T, Performance impact, Reporting control, Determining rate

ST33000652SS, ST33000650SS, ST33000651SS specifications

The Seagate ST33000651SS, ST33000650SS, and ST33000652SS are high-performance enterprise hard drives designed for demanding storage applications. These models are part of the Seagate Constellation ES series, known for their reliability and performance in server and data center environments.

One of the most notable features of these drives is their capacity. The ST33000651SS and ST33000650SS offer a storage capacity of 3TB, providing ample space for data-intensive applications. The ST33000652SS enhances this with a larger storage option, ensuring that organizations can meet growing data demands without needing frequent upgrades.

These drives utilize a SATA 6Gb/s interface, which allows for high-speed data transfer. This increased bandwidth is essential for applications that rely on rapid access, such as virtualization, cloud computing, and database management systems. Additionally, the drives support Native Command Queuing (NCQ), which enhances performance by optimizing the order in which read and write commands are executed.

Reliability is paramount in enterprise environments, and Seagate addresses this with several technologies designed to minimize downtime. The ST33000651SS and its counterparts feature a 7200 RPM spindle speed, which not only delivers fast access times but also contributes to the overall durability of the drives. They also come with advanced error correction and data integrity features, which safeguard against data loss.

Another important characteristic of these drives is their low power consumption. Operating at an average power usage of 6.0W, they help reduce operational costs, particularly in large-scale deployments. This energy efficiency is essential for organizations looking to maintain sustainability while maximizing performance.

In terms of physical design, these hard drives are built to endure tough conditions typically found in data centers. They come in a standard 3.5-inch form factor, ensuring compatibility with a wide range of servers and storage enclosures. The robust design further enhances their lifespan, making them a sound investment for enterprise storage solutions.

In summary, the Seagate ST33000651SS, ST33000650SS, and ST33000652SS hard drives offer a compelling combination of high capacity, fast data transfer rates, and reliability. Their advanced technologies and energy-efficient design make them ideal choices for enterprises that require dependable and high-performing storage solutions in their IT infrastructure.