Teledyne 3000TA operating instructions Characteristic Input/Output Curve for a Micro-Fuel Cell

Models: 3000TA

1 89
Download 89 pages 24.58 Kb
Page 23
Image 23

Trace Oxygen Analyzer

Operational Theory

 

 

 

electronics is zeroed automatically when the instrument power is turned on.)

Figure 2-3. Characteristic Input/Output Curve for a Micro-Fuel Cell

2.3 Sample System

The sample system delivers gases to the Micro-Fuel Cell sensor from the analyzer rear panel inlet. Depending on the mode of operation either sample or calibration gas is delivered.

The Model 3000TA sample system is designed and fabricated to ensure that the oxygen concentration of the gas is not altered as it travels through the sample system. The sample encounters almost no dead space. This minimizes residual gas pockets that can interfere with trace analysis.

The sample system for the standard instrument incorporates 1/4 inch tube fittings for sample inlet and outlet connections at the rear panel. For metric system installations, 6 mm adapters are supplied with each instrument to be used if needed. The sample or calibration gas flows through the system is monitored by a flowmeter downstream from

 

 

 

Teledyne Analytical Instruments

11

Page 23
Image 23
Teledyne 3000TA operating instructions Characteristic Input/Output Curve for a Micro-Fuel Cell

3000TA specifications

The Teledyne 3000TA is an advanced telemetry system designed for high-performance applications in various industries such as aerospace, automotive, and research. This innovative device combines cutting-edge technologies with user-friendly features, making it an essential tool for engineers and scientists alike.

One of the standout features of the Teledyne 3000TA is its robust data acquisition capabilities. It offers a high sampling rate, which allows users to capture rapid changes in measurements accurately. This is particularly beneficial for applications that require real-time data analysis and decision-making, such as testing the performance of new aircraft components or monitoring engine behavior under different loads.

The 3000TA integrates multiple sensor interfaces, enabling it to connect seamlessly with various types of sensors, including temperature, pressure, and strain gauges. This versatility makes it suitable for a wide range of testing scenarios, from structural analysis to environmental monitoring. Users can customize the system to fit their specific needs, significantly enhancing its functionality.

Another significant advantage of the Teledyne 3000TA is its advanced wireless communication technology. By employing protocols like Bluetooth and Wi-Fi, it allows for remote data monitoring and access, which improves safety and convenience during testing processes. Engineers can easily gather data from hazardous environments without being physically present, ensuring both efficiency and safety.

The device is also equipped with an intuitive user interface, which simplifies the setup and operation processes. The touchscreen display provides real-time data visualizations and easy navigation through various menus, making it accessible even to those new to telemetry systems. This user-centric design reduces the learning curve and enhances overall productivity.

In terms of data integrity, the Teledyne 3000TA features robust error-checking and validation protocols. These built-in safeguards ensure that the data collected is accurate and reliable, which is crucial for making informed decisions based on telemetry data.

The system's compact and lightweight design ensures portability, allowing for use in various fields and environments. This flexibility enhances its appeal for field applications, where space and weight can be significant constraints.

In summary, the Teledyne 3000TA stands out as a versatile and reliable telemetry solution, combining high-performance data acquisition, advanced communication technologies, and user-friendly features. Its application across multiple industries makes it an invaluable tool for professionals seeking to optimize their testing and analysis processes.