Quantum Instruments Splitter Boxes manual Monobloc splitter boxes for DeviceNet bus

Page 28

References

108733

521940

 

FTB 1CNpppP0

FTB 1CNpppM0

 

 

108733

 

108727

 

FTB 1DNpppP0

FTB 1DNpppM0

 

 

108733

 

521945

FTB 1DPpppP0

FTB 1DPpppM0

 

108729

FTB 1IB

Presentation, functions:

Description, configuration:

pages 14 - 17

pages 18 , 21, 24,

IP 67 monobloc I/O splitter boxes for fieldbuses

AdvantysDistributed I/O, FTB splitter boxes

Number

 

Number,

Number,

Connection

Housing

Reference

Weight

of I/O

 

type of

type of

by

type

 

 

 

 

inputs

outputs

 

 

 

kg

 

(1)

(2)

 

 

 

 

Monobloc splitter boxes for CANopen bus

 

 

 

16

8

8,

8 x M12 female Plastic

FTB 1CN08E08SP0

0.430

 

 

 

transistor

connectors

 

 

 

 

 

 

 

 

 

 

 

 

12

4,

8 x M12 female Plastic

FTB 1CN12E04SP0

0.450

 

 

 

transistor

connectors

 

 

 

 

 

 

 

 

 

 

 

 

16

8 x M12 female Plastic

FTB 1CN16EP0

0.440

 

 

 

 

connectors

 

 

 

 

 

 

 

Metal

FTB 1CN16EM0

0.820

 

 

 

 

 

 

 

16

0...16

0...16,

8 x M12 female

Plastic

FTB 1CN16CP0

0.450

configur-

 

 

transistor

connectors

 

 

 

 

 

Metal

FTB 1CN16CM0

0.820

able

 

 

 

 

 

 

 

16 of

8 + 0...8

0...8,

8 x M12 female

Metal

FTB 1CN08E08CM0

0.820

which 8

 

 

transistor

connectors

 

 

 

configur-

 

 

 

 

 

 

 

able

 

 

 

 

 

 

 

 

 

 

 

 

Monobloc splitter boxes for DeviceNet bus

 

 

16

8

8,

8 x M12 female Plastic

FTB 1DN08E08SP0

0.450

 

 

 

transistor

connectors

 

 

 

 

 

 

 

 

 

 

 

 

12

4,

8 x M12 female Plastic

FTB 1DN12E04SP0

0.450

 

 

 

transistor

connectors

 

 

 

 

 

 

 

 

 

 

 

 

16

8 x M12 female Plastic

FTB 1DN16EP0

0.430

 

 

 

 

connectors

Metal

FTB 1DN16EM0

0.820

 

 

 

 

 

 

 

16

0...16

0...16,

8 x M12 female

Plastic

FTB 1DN16CP0

0.450

configur-

 

 

transistor

connectors

Metal

FTB 1DN16CM0

0.820

able

 

 

 

 

 

 

 

16 of

8 + 0...8

0...8,

8 x M12 female

Metal

FTB 1DN08E08CM0

0.820

which 8

 

 

transistor

connectors

 

 

 

configur-

 

 

 

 

 

 

 

able

 

 

 

 

 

 

 

Monobloc splitter boxes for Profibus-DP bus

 

 

16

8

8

8 x M12 female Plastic

FTB 1DP08E08SP0

0.430

 

 

 

 

connectors

 

 

 

 

 

 

 

 

 

 

 

 

12

4

8 x M12 female Plastic

FTB 1DP12E04SP0

0.430

 

 

 

 

connectors

 

 

 

 

 

 

 

 

 

 

 

 

16

8 x M12 female Plastic

FTB 1DP16EP0

0.430

 

 

 

 

connectors

Metal

FTB 1DP16EM0

0.820

 

 

 

 

 

 

 

16

0...16

0...16

8 x M12 female Plastic

FTB 1DP16CP0

0.430

configur-

 

 

 

connectors

 

 

 

able

 

 

 

 

Metal

FTB 1DP16CM0

0.820

 

 

 

 

 

 

16 of

8 + 0...8

0...8

8 x M12 female Metal

FTB 1DP08E08CM0

0.820

which 8

 

 

 

connectors

 

 

 

configur-

 

 

 

 

 

 

 

able

 

 

 

 

 

 

 

 

 

 

 

 

Monobloc splitter boxes for InterBus bus

 

 

 

16

8

8

8 x M12 female Plastic

FTB 1IB08E08SP1

0.430

 

 

 

 

connectors

 

 

 

 

 

 

 

 

 

 

 

12

4

8 x M12 female Plastic

FTB 1IB12E04SP1

0.440

 

 

 

 

connectors

 

 

 

 

 

 

 

 

 

 

 

16

8 x M12 female Plastic

FTB 1IB16EP1

0.430

 

 

 

 

connectors

 

 

 

 

 

 

 

 

 

16

0...16

0...16

8 x M12 female Plastic

FTB 1IB16CP1

0.430

configur-

 

 

 

connectors

 

 

 

able

 

 

 

 

 

 

 

(1)c 24 V IEC type 2.

(2)c 24 V/1.6 A.

Characteristics:

Dimensions:

pages 26, 27

pages 31 - 33

28

Courtesy of Steven Engineering, Inc. ● 230 Ryan Way, South San Francisco, CA 94080-6370 ● General Inquiries: (800) 670-4183 ● www.stevenengineering.com

Image 28
Contents IP 67 I/O Splitter Boxes Catalog JanuaryPage 0IP 67 I/O Splitter Boxes Type of signal Type of input/output connectorsHousing type Fieldbus typeModular I/O splitter boxes Advantys, FTM splitter boxes IP 67 passive splitter boxes PresentationDescription Environmental characteristics Channel characteristicsConnection characteristics Substitution tableAccessories ReferencesSplitter boxes only, M12 Separate componentsDimensions Connector connectionABE 9C124 pL pp 16 I/O 8 I/O+ 8 diagnostic I/O 16 I 8 I + 8 diagnostic inputs+ 8 I/O 8 I + 8 diagnostic I/O FTB 1DNpppP0 FTB 1DNpppM0 FTB 1DPpppP0 FTB 1DPpppM0 FTB 1IB Selection of signal type per channel FunctionsFTB Pp16E Pp08E08S Pp12E04S Pp16C 1D p08E08C M12Diagnostics Diagnostics per channel Sensor short-circuitActuator short-circuit Actuator warningCANopen and DeviceNet bus extensions CANopen bus presentationDeviceNet bus presentation CANopen bus configuration ConfigurationDeviceNet bus configuration Cabling accessories Cabling systemProfibus-DP bus Profibus-DP presentationAdvantys Distributed I/O, FTB splitter boxes Profibus-DP bus AddressingProfibus-DP bus connection cables InterBus bus extenson InterBus bus presentationInterBus bus extention InterBus bus extension Fieldbus characteristics Input/output characteristics Input characteristicsOutput characteristics Splitter box typeMonobloc splitter boxes for DeviceNet bus Connection accessories For CANopen/DeviceNet busesFor Profibus-DP bus For InterBus busSeparate components For all bus typesFTB 1CNpppP0, FTB 1DNpppP0, FTB 1DPpppP0 FTB 1IBpppP1 4 elongated holeConnector connection Sensor/actuator connectionCANopen and DeviceNet buses Supply to splitter box Bus input/Bus outputLocal bus, bus input Local bus, bus outputMain bus, bus input Main bus, bus outputBus modules FTM Industrial fieldbus type Degree of protection Bus connector typeMaximum number of digital I/O per bus module Connector type ResolutionDiagnostics Per channel Splitter boxes FTM Digital inputs/outputsPrinciple Compact splitter boxes Expandable splitter boxesDigital I/O splitter boxes Analog I/O splitter boxesFTM 1DD FTM 1DE M12 and M8Functions CANopen bus configuration DeviceNet bus configuration PLC FTM 1DP One bus power supply status LED FTM 1CN/1DN FTM 1DP Cabling accessories for bus modules Internal cabling accessoriesBus module characteristics FTM 1CN10 FTM 1DN10 FTM 1DP10Analog input/output splitter box characteristics Digital input/output splitter box characteristicsCharacteristics FTM 1CN10 Bus modules for modular splitter boxesFTM 1AE04C12C For internal bus FTX CBTL12CD-ROM FTX ES00Bus modules FTM 1pp10 Splitter boxesFTM 1DD16C12 FTM 1DE16C12 FTM 1Dp08C12Input/output connection for analog splitter boxes Auxiliary power supplyBus input/Internal bus output of splitter boxes Switch mode power supplies Applications Nominal powerSignalling Other characteristics MountingABL 7REQ ABL 7UEQ ABL 7UES ABL 7UPS Phaseo modular regulated power supplies Modular switch mode power supplies ABL 7RMTechnical characteristics Operating characteristicsInput circuit Output circuitUpstream protection of power supplies SelectionSchemes GB2 CB pp GB2 CD pp GB2 DB pp GB2 CS ppModular regulated switch mode power supplies ABL 7RM Power supply ABL 7RMppppScheme ABL 7RMppppPhaseo regulated switch mode power supplies ABL 7 power suppliesUsing c 24 Operating voltageABL 7UPS and ABL 7UES ABL 7REQSelection of power supplies Selection according to application characteristics ABLABL 7CEM ABL 7RE ABL 7RP Mtbf General rules to be complied with DeratingABL 7CEM Temporary overloads Load limitSeries or parallel connection ABL 7REQ power supplies protection of the power supply line Type of mains supplyABL 7CEM single-phase regulated switch mode power supplies ABL 7RE single-phase regulated switch mode power suppliesABL 7RP single-phase regulated switch mode power supplies ABL 7REQ 2-phase regulated switch mode power supplies7UPS24100 ABL 7UEQ24200 ABL 7UPS24200ABL 7RE2402/2403 ABL 7RE2405 ABL 7RE2410 ABL 7RP2403 ABL 7CEM24ppp ABL 7REQ24ppp ABL 7RP1205/2405/4803ABL 7UEppppp ABL 7UPSppppp and 7UESProduct Reference Index IP 67 I/O Splitter Boxes Page Schneider Electric Head office Schneider Electric

Splitter Boxes specifications

Quantum Instruments Splitter Boxes represent a significant advancement in the realm of optical signal processing and distribution. These sophisticated devices are designed to efficiently split and manage optical signals while ensuring minimal loss and optimal performance. One of the standout features of Quantum Instruments Splitter Boxes is their robust construction, which is designed to withstand harsh environmental conditions, making them suitable for both indoor and outdoor applications.

A key technology utilized in these splitter boxes is the advanced fiber optic splitting technology, which employs high-quality optical fibers to achieve precise signal distribution. This technology allows for uniform splitting ratios, ensuring that each output maintains the integrity of the original signal. Furthermore, Quantum Instruments has integrated low-loss components into their splitter boxes, which contribute to high transmission efficiency and reduced signal attenuation.

In terms of characteristics, Quantum Instruments Splitter Boxes are available in various configurations to meet diverse user needs. They support multiple input and output configurations, ranging from simple one-to-two splits to complex multi-channel setups. This versatility makes them ideal for a wide range of applications, from telecommunications and data centers to broadcasting and surveillance systems.

The boxes also feature user-friendly interfaces for easy installation and maintenance. Their modular design allows for straightforward scaling and customization, enabling users to adapt the system as their requirements evolve. Additionally, the splitter boxes are equipped with advanced diagnostics and monitoring capabilities to ensure optimal performance and quick identification of any potential issues.

Moreover, Quantum Instruments prioritizes energy efficiency in their designs. The splitter boxes are engineered to minimize power consumption while maximizing performance, making them a sustainable choice for modern optical networks.

Quantum Instruments Splitter Boxes not only embody cutting-edge technology but also emphasize reliability and practicality. With a commitment to innovation, they continue to set benchmarks in the industry, making them a preferred choice for professionals looking to enhance their optical signal distribution systems. Their combination of high-quality materials, advanced technology, and user-oriented design ensures that users receive unparalleled performance and value. As the demand for more efficient communication systems grows, Quantum Instruments remains at the forefront, delivering solutions that cater to the evolving needs of the industry.