Intel EPS1U manual Protection Circuits, Current Limit, 240VA Protection, Over Current Protection

Page 23

SSI

EPS1U Power Supply Design Guide, V1.1

7Protection Circuits

STATUS

Required

Protection circuits inside the power supply shall cause only the power supply’s main outputs to shutdown. If the power supply latches off due to a protection circuit tripping, an AC cycle OFF for 15 seconds and a PSON# cycle HIGH for 1 second shall be able to reset the power supply.

7.1Current Limit

STATUS

Required

The power supply shall have current limit to prevent the +3.3 V, +5 V, and +12 V outputs from exceeding the values shown in Table 17. If the current limits are exceeded, the power supply shall shutdown and latch off. The latch will be cleared by toggling the PSON# signal or by an AC power interruption. The power supply shall not be damaged from repeated power cycling in this condition. –12 V and 5 VSB shall be protected under over current or shorted conditions so that no damage can occur to the power supply. All outputs shall be protected so that no damage occurs to the power supply under a shorted output condition.

Table 17: Over Current Protection

Voltage

+3.3 V

+5 V

+12 V

Over Current Limit (Iout limit)

110% minimum; 150% maximum

110% minimum; 150% maximum

110% minimum; 150% maximum

7.2240VA Protection

STATUS

Recommended

System designs may require user access to energized areas of the system. In these cases the power supply may be required to meet regulatory 240VA limits for any power rail. Since the +12V rail combined power exceeds 240VA it must be divided into separate channels to meet this requirement. Each separate rail needs to be limited to less than 20A for each +12V rail. The separate +12V rails do not necessarily need to be independently regulated outputs. They can share a common power conversion stage. The +12V rail is divided into two rails for the 250W and 350W power levels. +12V1 is dedicated for providing power to the input of the processor voltage regulator(s). The +12V2 rail is used to power the rest of the main board +12V power needs and peripherals devices.

Table 18: Over Current Protection

Voltage

Over Current Limit (Iout limit)

+3.3 V

110% minimum; 150% maximum

+5 V

110% minimum; 150% maximum

+12V1

18A minimum; 20A maximum

+12V2

18A minimum; 20A maximum

Image 23
Contents SSI Disclaimer Contents Tables FiguresConceptual Overview PurposeDefinitions, Terms, and Acronyms listed alphabetically Definitions/Terms/AcronymsMechanical Overview High Power Card Edge Form FactorInterior Face Small Power Form FactorAlternate Enclosure Exterior FaceThermal Requirements Temperature RequirementsAirflow Requirements Input Under Voltage AC Inlet ConnectorAC Input Voltage Specification AC Input RequirementsAC Inrush EfficiencyAC Line Dropout AC Line FuseAC Line Surge Transient Performance AC Line Transient SpecificationAC Line Fast Transient Specification AC Line Sag Transient PerformanceEdge Finger Pinout DC Output SpecificationConnector Edge Finger Layout Remote Sense Output Power/CurrentsGrounding 250 W Load Ratings Low Power RecommendationMedium Power Recommendation 125 W Load Ratings350 W Load Ratings High Power RecommendationOptional +5V Regulation Limits Voltage RegulationDynamic Loading Voltage Regulation LimitsRipple and Noise Capacitive LoadingRipple / Noise Capacitive Loading ConditionsOutput Voltage Timing Timing RequirementsRecommended Description Turn On/Off TimingTurn On/Off Timing Signal Power Supply Over Current Protection Protection CircuitsCurrent Limit 240VA ProtectionOutput Voltage Over Temperature ProtectionOver Voltage Protection Over Voltage LimitsPSON# Control and Indicator FunctionsPSON# Signal Characteristic Pwok Signal Characteristics Pwok Power OKACWarning ACWarning Signal CharacteristicsFRU Device Product Information Area Field Replacement Unit FRU SignalsFRU Device Information Area Type DescriptionField Name PS Info Field Information Definition FRU Device MultiRecord AreaPower Supply Condition Power Supply LED LED IndicatorLED Indicators ∙ TUV ∙ VDE Agency Requirements

EPS1U specifications

The Intel EPS1U is a powerful and compact single-board computer designed to cater to the growing demands of edge computing, IoT applications, and industrial automation. This system boasts a range of features tailored for versatility, performance, and reliability in various environments.

At the heart of the EPS1U is Intel's cutting-edge architecture, which utilizes low-power processors that deliver robust performance without compromising energy efficiency. This makes the EPS1U suitable for operations in constrained environments where thermal and power management is critical. The board supports various Intel processors, allowing users to select the right balance between performance and power consumption for their specific applications.

One of the standout characteristics of the EPS1U is its extensive I/O capabilities. With multiple USB ports, GPIO pins, and support for various communication protocols such as Ethernet, RS-232, and CAN bus, the EPS1U can connect seamlessly to a wide array of peripherals and networked devices. This connectivity makes it an ideal choice for implementing IoT solutions, enabling real-time data collection and analysis.

The EPS1U is equipped with advanced technologies such as Intel's RealSense for depth sensing and vision processing, providing unparalleled capabilities for robotic applications and computer vision tasks. Additionally, the board supports Intel's OpenVINO toolkit, which optimizes deep learning and computer vision workloads for enhanced performance on edge devices, making it easier for developers to deploy AI-powered applications.

Another notable feature of the EPS1U is its rugged design, ensuring reliability in challenging conditions. The board is built to withstand vibrations, extreme temperatures, and shock, which is essential for industrial deployments or outdoor applications. This durability ensures consistent performance in environments where standard consumer-grade components might fail.

Furthermore, the EPS1U provides extensive support for software development, offering compatibility with various operating systems, including Linux and Windows, along with comprehensive SDKs. This allows developers to quickly create applications tailored to their specific needs, accelerating the time to market for innovative solutions.

Overall, the Intel EPS1U represents a significant step forward in the evolution of edge computing platforms, with its combination of performance, connectivity, and durability. Whether for smart factories, automated systems, or advanced IoT applications, the EPS1U stands out as a versatile and powerful solution for modern digital transformation initiatives.