Intel LGA775 user manual Advanced Chipset Features

Page 42

BIOS SETUP

Advanced Chipset Features

This Setup menu controls the configuration of the chipset.

Phoenix - AwardBIOS CMOS Setup Utility

Advanced Chipset Features

DRAM Timing Selectable

By SPD

CAS Latency Time

2.5

Active to Precharge Delay

7

DRAM RAS# to CAS# Delay

3

DRAM RAS# Precharge

3

Memory Frequency For

Auto

System BIOS Cacheable

Enabled

Video BIOS Cacheable

Enabled

Memory Hole At 15M-16M

Disabled

AGP Aperture Size (MB)

128

** On-Chip VGA Setting **

 

On-Chip VGA

Enabled

On-Chip Frame Buffer Size

8MB

Boot Display

CRT

ITEM HELP

Menu Level

DRAM Timing Selectable

This option refers to the method by which the DRAM timing is selected. The default is By SPD.

CAS Latency Time

You can select CAS latency time in HCLKs of 2/2 or 3/3. The system board designer should set the values in this field, depending on the DRAM installed. Do not change the values in this field unless you change specifications of the installed DRAM or the installed CPU. The choices are 2 and 3.

Active to Precharge Delay

The default setting for the Active to Precharge Delay is 6.

DRAM RAS# to CAS# Delay

This option allows you to insert a delay between the RAS (Row Address Strobe) and CAS (Column Address Strobe) signals. This delay occurs when the SDRAM is written to, read from or refreshed. Reducing the delay improves the performance of the SDRAM.

DRAM RAS# Precharge

This option sets the number of cycles required for the RAS to accumulate its charge before the SDRAM refreshes. The default setting for the Active to Precharge Delay is 3.

38

2801550 User’s Manual

Image 42
Contents 2801550 Acknowledgments Table of Contents This page is intentionally left blank Introduction Product DescriptionChecklist Specifications ATXBoard Dimensions Installations Installing the CPU ATX Power InstallationInstalling the Memory Supported DDR Dimm ConfigurationsLock Setting the Jumpers Jumper Locations on Configuring the CPU Frequency JP4 Clear Cmos ContentsJP5 10/100Mb LAN Enable/Disable Connectors on Connector Locations on ATX1 ATX Power Supply Connector FDD1 Floppy Drive ConnectorIDE1, IDE2 Eide Connectors IDE1 Primary IDE Connector Signal NameFAN1 CPU Fan Power Connector FAN2 Chassis Fan Power ConnectorCN1 PS/2 Keyboard and PS/2 Mouse Connectors CN2, J1, J10, J13 Serial Ports CN3 Parallel Port Connector CN4 VGA CRT ConnectorCN5 USB and 10/100Mb LAN RJ45 Connectors CN6 USB and Gigabit LAN RJ45 ConnectorsCN7 Line Out, Line In, Mic Connector J2 Digital 4-in 4-out I/O Connector J4 IrDA ConnectorJ5 ATX 12V Power Connector J12 USB Connector J9 CD-In Audio ConnectorJ11 External Audio Connector J14 Wake on LAN ConnectorJ15 System Function Connector Speaker Pins 1SMI/Hardware Switch Pins 6 Watchdog Timer Configuration Sample CodeNone OUT Bios Setup Bios Introduction Bios Setup Phoenix AwardBIOS Cmos Setup Utility Standard Cmos Setup DateTime IDE Primary HDDs / IDE Secondary HDDsDrive a / Drive B Video Halt OnAdvanced Bios Features Delay Prior to ThermalLimit Cpuid MaxVal First/Second/Third Boot Device Hard Disk Boot PriorityQuick Power On Self Test Boot Other DeviceTypematic Rate Setting Boot Up Floppy SeekBoot Up NumLock Status Typematic Delay MsecReport No FDD For WIN MPS Version Control for OSOS Select for Dram 64MB Small Logo EPA ShowAdvanced Chipset Features AGP Aperture Size MB Integrated Peripherals IDEIDE Primary/Secondary Master/Slave PIO IDE HDD Block ModeOnChip Primary/Secondary PCI IDE IDE Primary/Secondary Master/Slave UdmaAC97 Audio Uart Mode SelectParallel Port Mode CSA LAN Giga-LANAcpi Function Power Management SetupPower Management Video Off MethodPower On by Ring Suspend ModeHDD Power Down Resume by AlarmReload Global Timer Events Reset Configuration Data PNP/PCI ConfigurationsPNP OS Install Resources Controlled byPC Health Status Auto Detect PCI Clk Frequency/Voltage ControlCPU Clock Ratio Spread SpectrumSet Supervisor/User Password Load Fail-Safe DefaultsLoad Setup Defaults Save & Exit SetupThis page is intentionally left blank Drivers Installation Intel 865G Chipset Software Intallation Utility Drivers Installation Drivers Installation Intel 865G Chipset Graphics Driver Drivers Installation Realtek AC97 Codec Audio Driver Installation Intel PRO LAN Drivers Installation Appendix O Port Address MapInterrupt Request Lines IRQ Global American Inc

LGA775 specifications

The Intel LGA775, also known as Socket T, was a significant advancement in CPU socket design when it was introduced in 2004, primarily tailored for Intel's Pentium 4, Pentium D, Core 2 Duo, and Xeon processors. This socket provided a robust platform for users seeking performance improvements over previous socket designs, specifically the LGA 478.

One of the standout features of LGA775 is its physical layout. The socket utilizes a Land Grid Array configuration, comprising 775 pins on the motherboard that create an electrical connection with the chip. This design enhances the physical stability of the connection, reducing the likelihood of damage during component installation.

LGA775 supports a range of Intel technologies such as Dual-Core processing, which significantly improved multitasking and performance in demanding applications by integrating two cores within a single processor. This advancement laid the groundwork for more efficient computing, catering to both casual and professional users alike.

Another key technology associated with the LGA775 platform is the Enhanced Speedstep Technology (EIST), which allowed processors to adjust their voltage and frequency dynamically. This not only optimized performance but also contributed to energy efficiency, making it a more environmentally friendly choice for users.

The socket supports various front-side bus (FSB) speeds, ranging from 800 MHz to 1600 MHz, enabling higher data transfer rates between the CPU and RAM. This performance characteristic is critical for applications that require substantial memory throughput, such as video editing and gaming.

Moreover, LGA775 was compatible with a variety of chipsets that enhanced its capabilities, such as those featuring Intel's own Express Chipsets. These chipsets included integrated graphics, USB 2.0 support, and improved storage interfaces like SATA, which streamlined data management and boosted overall system performance.

Over the years, LGA775 has become a popular choice for budget and mid-range desktops, particularly because of its versatility and broad compatibility with different processor generations. Even with the advent of newer sockets, LGA775 remains a memorable part of Intel's legacy, representing a crucial stepping stone towards modern multi-core architectures.

In summary, Intel's LGA775 socket brought about comprehensive advancements in design, performance, and power management, making it a noteworthy component in the history of computing. Its influence continues to be felt, as it set the standards for subsequent socket designs that prioritize efficiency and performance.