Intel TE430VX manual Advanced Power Management, Language Support, Boot Options

Page 44

TE430VX MotherboardMotherboard Technical Product Specification

3.7 Advanced Power Management

The BIOS has support for Advanced Power Management (APM version 1.1). The energy saving Stand By mode can be initiated by a keyboard hot key sequence set by the user, a time-out period set by the user, or by a suspend/resume button tied to the front panel sleep connector.

When in Stand-by mode, the motherboard reduces power consumption by utilizing the Pentium processor’s System Management Mode (SMM) capabilities and also spinning down hard drives and turning off VESA DPMS compliant monitors. The user may select which DPMS mode (Stand By, Suspend, or Off) send to the monitor in setup. The ability to respond to external interrupts is fully maintained while in Stand-by mode allowing the system to service requests such as in-coming Fax's or network messages while unattended. Any keyboard or mouse activity brings the system out of the energy saving Stand By mode. When this occurs the monitor and IDE drives are turned back on immediately.

APM is enabled in BIOS by default, however, the system must be configured with an APM driver in order for the system power saving features to take effect. Windows 95 will enable APM automatically upon detecting the presence of the APM BIOS.

3.8 Language Support

The BIOS setup screen and help messages are supported in 32 languages. There are 5 languages translated at this time for use; American English, German, Italian, French, and Spanish. Translations of other languages will available at a later date.

With a 1 Mb Flash BIOS, only one language can be resident at a time. The default language is American English, and will always be present unless another language is programmed into the BIOS using the Flash Language Update Program (FLUP) available on the Intel BBS.

3.9 Boot Options

Booting from CD-ROM is supported in adherence to the “El Torito” bootable CD-ROM format specification developed by Phoenix Technologies and IBM. Under the Boot Options field in setup, CD-ROMis one of four possible boot devices which are defined in priority order. The default setting is for floppy to be the primary boot device and hard drive to be the secondary boot device. If CD-ROM is selected, it must be the first device. The third and fourth devices are set to disabled in the default configuration.. The user can add also select network as a boot device. The network option allows booting from a network add-in card with a remote boot ROM installed.

NOTE

A copy of “El Torito” is available on Phoenix Web page (http://www.ptltd.com/techs/specs.html).

44

Image 44
Contents TE430VX Date RevisionRevision History Table of Contents TE430VX Motherboard Technical Product Specification Motherboard ResourcesContents Motherboard Bios and Setup UtilityError Messages and Beep Codes Page Motherboard Description OverviewTigereye board diagram Motherboard Description Motherboard Manufacturing OptionsForm Factor Microprocessor Upgrade MicroprocessorMemory System MemoryChipset SdramSecond Level Cache 1 82430VX System Controller TVX2 82430VX Data Path TDX PCI ISA/IDE Xcelerator PIIX3Real time clock, Cmos RAM and battery Ultra I/O Interface Controller SMC FDC37C93FRFloppy controller Keyboard and mouse interfaceGraphics Subsystem S3 Trio64V+ IrDA infra-red supportConsumer IR Support Parallel portResolutions supported Graphics ResolutionsAudio Subsystem Creative Labs Vibra 16C Graphics Drivers and UtilitiesVibra 16C resource map Audio DriversMotherboard Connectors Motherboard Connector LocationsCD-ROM Connector J2F2 Wave Table Connector J2F3Telephony Connector J2F1 Power Connector J7M2Motherboard Description Signal Name Floppy Drive Connector J10H1IDE Connectors J9H1, J9H2 Front Panel I/O Connectors J9E2 IDE Connectors J9H1, J9H2ISA Connectors- J1A1, J1A2, J1B1 PCI Connectors J2C1, J2D1, J2E1, J2E2 ISA ConnectorsSignal Name Pin PinPower Supply Connectors PCI Connectors J2C1, J2D1, J2E1, J2E2Front panel Connectors SpeakerReset Sleep or Power LEDInfra-Red IrDA connector HD LEDRemote ON/OFF and Soft Power Support Back Panel ConnectorsAdd-in Board Expansion Connectors O ConnectionsJumper Settings ConfigurationFunction JumperCPU Configuration J9C1-C, D Clear Cmos J9C1-A, Pins 4,5,6Password clear J9C1-A, Pins 1,2,3 Cmos Setup Access J9C1-B, Pins 1,2,3Bios Recovery J7A1 Motherboard Environmental SpecificationsReliability EnvironmentalPower Consumption Regulatory ComplianceICES-003, Issue 15.2 EMI Cispr 22, 2nd Edition15.2.2 EN 55 022 15.2.3 EN 50 082-1Installation Requirements Follow Installation InstructionsCanadian Compliance Assure Host System CompatibilityAssure Host System & Accessory Certifications Installation PrecautionsBattery Marking Overload ProtectionPage Memory Map I/O MapMemory Map O MapAddress hex Size PCI Configuration Space Map PCI Configuration Space MapSoft-Off Control DMA ChannelsInterrupts InterruptsBios Flash Memory Organization IntroductionFlash Memory Organization System AddressBios Upgrades Recommendations for Configuring an Atapi DevicePCI IDE Support Primary CableISA Plug and Play PCI Auto-configurationMotherboard Bios and Setup Utility Language Support Advanced Power ManagementBoot Options Setup Enable Jumper Bios Setup ProgramOverview of the Setup Menu Screens Flash Logo AreaMain Bios Setup Screen System DateSystem Time Floppy OptionsBoot Options Video ModePrimary Slave Secondary MasterFloppy Access IDE Device Configuration SubscreenFloppy a Type Floppy B TypeIDE Translation Mode Multiple Sector SettingBoot Options Subscreen First, Second, Third, Fourth Boot DeviceSetup Prompt Typematic Rate DelayNum Lock Typematic Rate ProgrammingPeripheral Configuration Advanced Chipset ConfigurationPower Management Configuration Plug and Play ConfigurationSerial Port 2 IR Mode Parallel Port ModeAdvanced Chipset Configuration Subscreen Parallel Port AddressLatency Timer PCI Clocks Power Management Configuration SubscreenAdvanced Power Management IDE Drive Power DownPlug and Play Configuration Subscreen Boot with PnP OSISA Shared Memory Size ISA Shared Memory Base AddressAdministrative and User Access Modes Administrative and User Password FunctionsPassword Set Security ScreenSecurity Screen Options User Password is Administrative Password isSet User Password Set Administrative PasswordLoad Setup Defaults Discard ChangesPage Beeps Error Message Bios Beep CodesPCI Configuration Error Messages Explanation Bios Error MessagesError Message Bios Error Messages Error Messages and Beep CodesISA NMI Messages ISA NMI Message Explanation

TE430VX specifications

The Intel TE430VX was a landmark product in the realm of computing during the early 1990s. This microprocessor, part of Intel's line of Pentium processors, was primarily aimed at the burgeoning market for personal and business computing.

One of the main features of the Intel TE430VX was its 32-bit architecture, which allowed for a significant increase in processing power compared to its predecessors. The 32-bit data bus enabled the handling of larger amounts of data simultaneously, enhancing overall system performance. The TE430VX was capable of executing instructions at clock speeds ranging from 60 MHz to 66 MHz, which was quite impressive for its time. This processing power made it suitable not only for everyday computing tasks but also for more demanding applications such as graphic design and gaming.

The TE430VX also incorporated advanced technologies such as pipelining, which allowed it to execute multiple instructions in a single clock cycle. This feature contributed to improved performance and responsiveness, making the user experience smoother. The microprocessor supported a variety of RAM types, including EDO (Extended Data Out) RAM, which further enhanced its performance by reducing memory access times.

Another characteristic that set the TE430VX apart was its compatibility with a wide range of operating systems, including DOS, Windows, and various UNIX variants. This flexibility ensured that users could run their preferred software without compatibility issues, making it a versatile choice for home and business environments alike.

The integration of a built-in memory controller also simplified motherboard design, reducing the overall cost of systems utilizing the TE430VX. This chip also supported advanced graphics options, allowing users to experience better multimedia performance through dedicated graphics cards.

Power consumption was another consideration in the design of the TE430VX. It was engineered to operate efficiently while maintaining good performance, an important factor for long-term sustainability in computing environments.

In summary, the Intel TE430VX was a significant advancement in microprocessor technology during the early 1990s. Its 32-bit architecture, pipelining capabilities, compatibility with multiple operating systems, and efficient power consumption contributed to its reputation as a reliable choice for both personal and professional use, solidifying Intel's position as a leader in the computing landscape.