Fujitsu MHV2120AT, MHV2100AT, MHV2080AT manual Digital PLL circuit, FIR circuit, D converter circuit

Page 67

4.6 Read/write Circuit

(3) FIR circuit

This circuit is 10-tap sampled analog transversal filter circuit that equalizes the head read signal to the Modified Extended Partial Response (MEEPR) waveform.

(4) A/D converter circuit

This circuit changes Sampled Read Data Pulse from the FIR circuit into Digital Read Data.

(5) Viterbi detection circuit

The sample hold waveform output from the flash digitizer circuit is sent to the Viterbi detection circuit. The Viterbi detection circuit demodulates data according to the survivor path sequence.

4.6.4 Digital PLL circuit

The drive uses constant density recording to increase total capacity. This is different from the conventional method of recording data with a fixed data transfer rate at all data area. In the constant density recording method, data area is divided into zones by radius and the data transfer rate is set so that the recording density of the inner cylinder of each zone is nearly constant. The drive divides data area into 30 zones to set the data transfer rate.

The MPU sets the data transfer rate setup data (SD/SC) to the RDC that includes the Digital PLL circuit to change the data transfer rate.

C141-E218

4-11

Image 67
Contents Disk Drive Product Manual MHV2120AT, MHV2100AT, MHV2080AT MHV2060AT, MHV2040ATHandling of This Manual For Safe OperationRevision History This page is intentionally left blank Overview of Manual PrefaceOperating Environment Conventions for Alert MessagesConventions Liability Exception This page is intentionally left blank Important Alert Messages Important Alert ItemsDamage Interface cable connection This page is intentionally left blank Manual Organization Disk Drive Maintenance ManualDisk Drive Product Manual This page is intentionally left blank Contents Theory of Device Operation Installation ConditionsInterface Contents101 Write Multiple EXT X’39’ Option customizing Operations Glossary GL-1 Acronyms and Abbreviations AB-1 Index IN-1 Figures IllustrationsExecution example of Read Multiple command Tables Surface temperature measurement points and standard25 Relationship between combination of Identifier This page is intentionally left blank Device Overview Functions and performance FeaturesAdaptability Data buffer Error correction and retry by ECCHigh resistance against shock Connection to ATA interfaceSpecifications summary Device SpecificationsSpecifications 1 Model and product number Specifications 2Examples of model names and product numbers Input Voltage Power RequirementsRipple Current and power dissipation Current Requirements and Power DissipationEnvironmental specifications Environmental SpecificationsCurrent fluctuation Typ. at +5 V when power is turned on Power on/off sequenceShock and Vibration Acoustic noise specificationShock and vibration specification Acoustic NoiseMean time between failures Mtbf Service lifeData assurance in the event of power failure ReliabilityMedia Defects Error RateUnrecoverable read error Positioning errorAdvanced Power Management Advanced Power Management Advanced Power ManagementThis page is intentionally left blank Device Configuration Device Configuration Read/write circuit System ConfigurationATA interface 2 1 drive connection3 2 drives connection 2 drives configurationInstallation Conditions Dimensions DimensionsIntegration Guidance C141-E144 MountingOrientation Limitation of mounting FramePCA Location of breather Ambient temperature Handling cautions Service areaHandling cautions Cable Connections Device connectorFCI Cable connector specificationsCable connector specifications Device connectionPower supply connector CN1 Jumper SettingsLocation of setting jumpers Master drive-slave drive setting Factory default setting14 Csel setting Csel setting16 Example 2 of cable select Power up in standby settingTheory of Device Operation Spindle OutlineSubassemblies DiskSpindle motor driver circuit Circuit ConfigurationAir filter Servo circuitPower supply configuration PCA Power-on operation sequence Power-on SequenceSelf-calibration Self-calibration contentsExecution timing of self-calibration Command processing during self-calibrationWrite precompensation Read/write CircuitRead/write preamplifier PreAMP Write circuitAGC circuit Read circuitProgrammable filter circuit Viterbi detection circuit Digital PLL circuitFIR circuit D converter circuitServo control circuit Servo ControlA converter DAC Power amplifierMicroprocessor unit MPU Servo burst capture circuitVCM current sense resistor CSR Driver circuitOuter guard band Data-surface servo formatInner guard band Data areaPhysical sector servo configuration on disk surface Servo frame format Track following operation Actuator motor controlOperation to move the head to the reference cylinder Seek operationSpindle motor control Start modeAcceleration mode Stable rotation modeThis page is intentionally left blank Interface Physical Interface Interface signalsDasp GND Signal assignment on the connectorSignal assignment on the interface connector DA1 PDIAG-, Cblid DA0 DA2Dior MstrDiow StopIordy PdiagCblid DaspLogical Interface I/O registers 1 I/O registersDA2 DA1 DA0 UNC Idnf Command block registersError register X’1F1’ Data register X’1F0’SET Multiple Mode Features register X’1F1’Sector Count register X’1F2’ Cylinder Low register X’1F4’ Sector Number register X’1F3’Cylinder High register X’1F5’ BSY Device/Head register X’1F6’DEV HS3 HS2 HS1 HS0 Status register X’1F7’Interface Control block registers Command register X’1F7’Alternate Status register X’3F6’ HOB Srst Host CommandsCommand code and parameters Device Control register X’3F6’Parameter Used Command code and parameters 1EXT Write Multiple FUA EXT Flush Cache EXT Command code and parameters 2Host Commands Command descriptions Host Commands Recalibrate X’10’ to X’1F’ MSB Read Sectors X’20’ or X’21’End head No. / LBA MSB Write Sectors X’30’ or X’31’ 1F7HST Status information 1F6HDH Write Verify X’3C’ Read Verify Sectors X’40’ or X’41’ Seek X’70’ to X’7F’ Diagnostic code Execute Device Diagnostic X’90’Host Commands Initialize Device Parameters X’91’ Download Microcode X’92’ Operation of Download Microcode Standby Immediate X’94’ or X’E0’ Unload Feature Unload Immediate Command Host Commands Standby X’96’ or X’E2’ Idle X’97’ or X’E3’ Interface ’FF’ Check Power Mode X’98’ or X’E5’Sleep X’99’ or X’E6’ Smart X’B0 Features register values subcommands and functions 1 Smart Read LOG Features register values subcommands and functions 2Smart Enable Operations Smart Disable Operations’DB’ Smart ENABLE/DISABLE Auto OFF-LINE Features register values subcommands and functions 3Smart Return Status Host Commands 1FF Format of device attribute value dataFormat of insurance failure threshold value data Attribute ID Data format version numberRaw attribute value Status FlagCurrent attribute value Attribute value for the worst case so farSelf-test execution status 10 Off-line data collection status11 Self-test execution status 13 Failure prediction capability flag Off-line data collection capability12 Off-line data collection capability Failure prediction capability flagInsurance failure threshold Error logging capability14 Error logging capability Check sumSmart error logging 16 Data format of Smart Summary Error Log 17 Data format of Smart Comprehensive Error Log Command data structureError data structure Total number of drive errorsSelf-test number Smart self-test18 Smart self-test log data format 1FCCurrent span under test 19 Selective self-test log data structureTest span Current LBA under test20 Selective self-test feature flags Feature flagsSelective self-test pending time min Device Configuration Identify Device Configuration XB1Device Configuration Restore Device Configuration FreezeDevice Configuration SET FR = C3h Device Configuration Restore FR = C0hDevice Configuration Freeze Lock FR = C1h Device Configuration Identify FR = C2hInterface 21 Device Configuration Identify data structure Interface Read Multiple X’C4’ Execution example of Read Multiple commandMSB Write Multiple X’C5’ Interface SET Multiple Mode X’C6’ Interface Read DMA X’C8’ or X’C9’ End head No. / LBA MSB Write DMA X’CA’ or X’CB’ Interface Read Buffer X’E4’ Flush Cache X’E7’ Write Buffer X’E8’ Identify Device X’EC’ Identify Device DMA X’EE’ ’3FFF’ 22 Information to be read by Identify Device command 122 Information to be read by Identify Device command 2 Word Command without interrupt supports 2, 4, 8 and 16 sectors = Supports the Host Protected Area feature set = Supports the CFA Compact Flash Association feature set Interface Host Commands Interface Host Commands Word Bit Reserved Security level High, 1 Maximum ’CC’ SET Features X’EF’23 Features register values and settable modes ’BB’Data Transfer Mode Advanced Power Management APM Automatic Acoustic Management AAM 24 Contents of Security SET Password data At command issuance I-O register contents 1F7hCM When the user password is selected When the master password is selectedSecurity UNLOCKX’F2’ Interface Security Erase Prepare X’F3’ Security Erase Unit X’F4’ Security Freeze Lock X’F5’ At command issuance I-O register contents 1F7hCM 26 Contents of security password Interface Read Native MAX Address X’F8’ SET MAX Address SET MAX X’F9’SET MAX SET Password FR = 01h SET MAX Lock FR = 02h SET MAX Unlock FR = 03h SET MAX Freeze Lock FR = 04h Host Commands Read Sectors EXT X’24’ Option customizing Description Read DMA EXT X’25’ Option customizing Description Error reporting conditions Read Multiple EXT X’29’ Option customizing Description Read LOG EXT X2F Optional command Customize Description Host Commands Write Sectors EXT X’34’ Option customizing Description Write DMA EXT X’35’ Option customizing Description SET MAX Address EXT X’37’ Option customizing Description SET MAX LBA Write Multiple EXT X’39’ Option customizing Description Write DMA FUA EXT X’3D’ Option customizing Description Write LOG EXT X’3F’ Optional command Customize Description Host Commands Read Verify Sectors EXT X’42 Option customizing Description Write Multiple FUA EXT X’CE’ Option customizing Description Flush Cache EXT X’EA’ Option customizing Description 27 Command code and parameters 1 Error posting27 Command code and parameters 2 PIO Data transferring commands from device to host Command ProtocolExecute Device Diagnostic Initialize Device Parameters Read Sectors Command protocol Protocol for command abort PIO Data transferring commands from host to device Write Sectors command protocol Commands without data transfer Read DMA EXT Write DMA EXT/FUA EXT Indentify Device DMA Other commandsDMA data transfer commands Read Multiple EXT Write Multiple EXT/FUA EXT SleepNormal DMA data transfer Overview Ultra DMA Feature SetUltra DMA data in commands Phases of operationInitiating an Ultra DMA data in burst Data in transfer Pausing an Ultra DMA data in burstTerminating an Ultra DMA data in burst Ultra DMA Feature Set Interface Initiating an Ultra DMA data out burst Ultra DMA data out commandsData out transfer Pausing an Ultra DMA data out burstTerminating an Ultra DMA data out burst Interface Ultra DMA CRC rules DIOW-STOP Series termination required for Ultra DMA28 Recommended series termination for Ultra DMA DIOR-HDMARDY-HSTROBEPIO data transfer TimingPIO data transfer timing Multiword data transfer 10 Multiword DMA data transfer timing mode11 Initiating an Ultra DMA data in burst Ultra DMA data transferStrobe Name Mode CommentMIN MAX 29 Ultra DMA data burst timing requirements 230 Ultra DMA sender and recipient timing requirements Mode Name CommentDD150 at host Sustained Ultra DMA data in burstDstrobe at device DD150 at device Dstrobe at hostHdmardy Host pausing an Ultra DMA data in burstDmarq DmackStop Device terminating an Ultra DMA data in burstHost Host terminating an Ultra DMA data in burstDA0, DA1, DA2 CS0, CS1 16 Initiating an Ultra DMA data out burst Hstrobe at host DD150 at host Sustained Ultra DMA data out burstHstrobe at device DD150 at device Device DMACK- host Stop host DDMARDY- device Device pausing an Ultra DMA data out burstHstrobe host DD150 Host 19 Host terminating an Ultra DMA data out burst Host terminating an Ultra DMA data out burstDmarq device DMACK- host Device terminating an Ultra DMA data out burstDD150 Host Master and slave devices are present 2-drives configuration Power-on and resetOnly master device is present Operations Response to power-on Device Response to the ResetResponse to power-on Response to hardware resetResponse to hardware reset Response to software reset Response to software resetResponse to diagnostic command Response to diagnostic commandActive idle mode Power SavePower save mode Active modeSleep mode Standby modeDefect Processing Power commandsSpare area Sector slip processing Alternating processing for defective sectorsTrack slip processing Automatic alternating processing Automatic alternating processingData buffer structure Read-ahead Cache8MB buffer 8,388,608 bytes Invalidating caching-target data Commands that are targets of cachingCaching operation Data that is a target of cachingSmart Miss-hit Using the read segment bufferSequential hit Full hit Partial hit Invalidation of cached data Command that are targets of cachingWrite Cache Cache operationEnabling and disabling Status report in the event of an errorReset response Caching function when power supply is turned onWrite Cache This page is intentionally left blank Glossary Positioning Power save modeRotational delay PIO Programmed input-outputVCM StatusThis page is intentionally left blank Acronyms and Abbreviations This page is intentionally left blank AAM IndexIndex Host terminating ultra DMA data Read Native MAX Address Read Sectors CommandSurface temperature measurement This page is intentionally left blank Japan Comment FormThis page is intentionally left blank C141-E218-01EN MHV2120AT, MHV2100AT, MHV2080AT, MHV2060AT, MHV2040ATThis page is intentionally left blank
Related manuals
Manual 40 pages 53.58 Kb