Schneider Electric 174 CEV manual Read Discrete Output Status

Page 10

Modbus Plus to Ethernet Bridge

Table 2 Summary of Modbus Data Access Commands

Function Code (Decimal)

Command Name

1

 

Read Discrete Output Status (0xxxx)

2

 

Read Discrete Input Status (1xxxx)

3

 

Read Output Register (4xxxx)

4

 

Read Input Register (3xxxx)

5

 

Force Single Coil (0xxxx)

6

 

Preset Single Register (4xxxx)

7

 

Read Exception Status

8

Subfunction 21

Get/Clear Network Statistics

15

 

Force Multiple Coils (0xxxx)

16

 

Preset Multiple Registers (4xxxx)

17

 

Report Slave ID

Devices which use the Modbus protocol accept incoming requests for data or statistics. They reply by returning either a normal or an exception response.

The Modbus function code in the request from an originating node always contains a most significant bit value of 0 (zero). In a normal Modbus response, the function code of the originating request is echoed, followed by any requested data or statistics. In an exception response, the most significant bit is set to 1 (one) to indicate an error, and the next byte contains an exception code showing the reason for the error.

Table 3 summarizes the Modbus exception codes which may be returned by the bridge to the originating node. For further information see the Modbus Protocol Reference Guide, publication PI--MBUS--300.

Table 3 Summary of Modbus Exception Codes

Exception Code (Hexadecimal)

Meaning

01

Illegal function

02

Illegal data address

03

Illegal data value

04

Unexpected failure during command execution

05

ACK ---- Requested operation is in progress

06

BUSY ---- Not ready to perform requested operation

07

NAK ---- Requested operation rejected

08

Could not open Modbus Plus path

09

Error during Modbus Plus send

0A

Error during Modbus Plus reply

5

Image 10
Contents Breite 185 mm Höhe 230 mm Breite 178 mm Höhe 216 mm Training Contents Using the Bridge Software Uploading and Downloading FilesDiagnostic Tools GlossaryModbus Plus to Ethernet Bridge CEV 200 Introducing the Ethernet to Modbus Plus Bridge Illustrates a typical bridge connectionTCP/IP Bridge Message Transactions and Paths Read Discrete Output Status Specifications Power Input Tolerance CurrentAgency Status Installing the Bridge Hardware Setting the Ethernet Connector Jumper Section Overview Hardware InstallationSetting the Modbus Plus Node Address Section Connecting the Network and Power Cables SectionCE Installation Requirements Section Verifying the Network Communication SectionSetting the Modbus Plus Node Address Bridge Enclosure Screws Remove ScrewsDefault Setting Setting the Ethernet Connector Jumper JP2 AUI Mounting the Bridge Hardware Mounting RequirementsInstalling the Bridge Hardware Connecting the Network and Power Cables BNC Grounding CE Installation RequirementsFerrite Bead on RF-45 Cable Modbus Plus Card Indicators Ethernet Card IndicatorsVerifying the Network Communication Factory Default Settings Ethernet Card DefaultsModbus Plus Card Defaults EdgeUpper Filter Periodic MaintenanceCleaning the Filters Lower FilterConfiguring the Bridge Files Resident in the Bridge Files Supplied With the BridgeHost Software Disk Files Generated or Modified by the Bridge Software Startup SequenceSetting the Modbus Plus and TCP/IP Address Mapping Overview Software ConfigurationSetting the Ethernet Configuration Configuration With a Bootp Server SectionConfiguration With a Bootp Server Starting Cfgutil Configuration With the Cfgutil UtilityNavigating the Cfgutil Menu Saving the Configuration Required Configuration FieldsAdditional Configuration Fields Address Mapping Table FieldsHow Mapping Works TCP/IP to Modbus Plus Destination Indexes 1 .. Mapped RoutingDestination Indexes 0 and 254 Dynamic Message Routing Destination Index 255 Bridge Internal CommandReserved Destination Indexes Setting the Mapping TCP/IP to Modbus Plus 1 MB+ Mapping Table Layout and Default EntriesEntry Example MB+ Mapping Table Saving the MappingByte 3. First Bridge’s IP Routing How Mapping Works Modbus Plus to TCP/IPBytes 1 and 2. Bridge Node Address and Path Byte 4. Second Bridge’s Modbus Plus RoutingBridge 2 Maps the Message to Modbus Plus Message is OriginatedBridge 1 Maps the Message to TCP/IP Message is DeliveredSetting the Mapping Modbus Plus to TCP/IP TCP Mapping Table Layout and Default EntriesEntry Example TCP Mapping Table Example Modbus Plus to TCP/IP MappingDynamic Routing of Messages Setting Up the Bridge for Dynamic RoutingContents Hex Contents Decimal ExampleUsing Dynamic Routing Setup Clearing the Bridge’s ConfigurationClearing the Configuration Using the Bridge Software Bridge Software Contents SW-MBPE-000 Minimum Requirements for Custom Bridge Configurations Using the Software in Custom ConfigurationsSetting Up a Custom Bridge Configuration DEVICE=MBPHOST.SYS /md000 /s5d /n0 /r2 Uploading and Downloading Files Configuring an Http Server Configuration ExampleCgi-bin Upload Overview Uploading Files to a HostInitiating an Upload Upload Example RTE.CFGDownload Overview Downloading Files to the BridgeInitiating a Download Download Example Diagnostic Tools Ethernet Diagnostics Diagnostics OverviewLogging the Bridge’s Activity Modbus Plus Diagnostics MbpstatStarting Logging Logging the Bridge’s ActivityHow Logging Works Stopping LoggingMode a Channel Logging Menu Saving the Logging Status and Log FileTcpinfo StartingStarting Ping at the Bridge PingStarting Ping at the Host Selecting the Network to be Analyzed Starting MbpstatNetwork Selection Examples Typical Mbpstat Routing Your Mbpstat Menu Entering Node AddressesOption 1 Set Routing Parameters Set Routing ParametersOption 2 Monitor Network Activity Monitor Network ActivityOption 3 Read Global Data Read Global DataOption 4 Global Data Present Table Global Data Present TableOption 5 Node Active Station Table Node Active Station TableOption 6 Node Error Statistics 05.00.00.00.00 Failure 244Option 7 Token Station Table Token Station TableOption 8 Token Owner Work Table Token Owner Work TableOption 9 Current Internal Path Transactions PathOption 10 Node Personality Node PersonalityMessage Examples Mstr Example TCP/IP Node Mstr in TCP/IP NodeMstr Example Modbus Plus Node Mstr in Modbus Plus NodeNCB Return Codes Network Control Block NCB Return Codes ERRsuccessGlossary Frame Default gatewayField Framing typesLayer InternetIP Address MAC AddressRouter SwitchRepeater ServerUTP Winsock

174 CEV specifications

Schneider Electric, a global leader in energy management and automation, has designed the Schneider Electric 174 CEV to meet the evolving demands of industrial applications. This innovative controller is engineered to enhance efficiency, flexibility, and reliability across various sectors.

One of the main features of the Schneider Electric 174 CEV is its robust communication capabilities. It supports multiple protocols, including Ethernet/IP, Modbus, and both serial and parallel communication interfaces. This multiplicity allows seamless integration with existing systems, ensuring that users can connect and manage devices within their operational setup without extensive changes to their infrastructure.

The 174 CEV is equipped with a powerful processing unit that ensures rapid data processing and real-time analytics. This is particularly advantageous for industries where quick decision-making is crucial. The controller is designed to handle large data sets and perform complex functions, all while maintaining optimal performance levels.

Another significant aspect of the Schneider Electric 174 CEV is its modular design. This feature allows for tailored solutions suited to specific application needs. Users can customize their setup by adding or removing modules based on their operational requirements, which enhances the controller’s versatility and longevity.

In terms of technology, the 174 CEV utilizes advanced algorithms for energy management and optimization. Users can benefit from predictive maintenance capabilities, which leverage data analytics to anticipate equipment failures before they occur. This proactive approach reduces downtime and maintenance costs, ultimately contributing to higher operational efficiency.

The controller also emphasizes user-friendly interfaces. With intuitive programming tools and a graphical user interface, operators can easily navigate through its functionalities, customize settings, and monitor performance metrics. This accessibility fosters greater user engagement and reduces the learning curve for new operators.

Safety is a top priority in the design of the Schneider Electric 174 CEV. The controller is built with compliance to international safety standards, ensuring that it can be deployed in a wide range of industries while guaranteeing the protection of both personnel and equipment.

Overall, the Schneider Electric 174 CEV stands out due to its combination of robust communication options, powerful processing capabilities, modular design, and user-friendly features. With its focus on energy efficiency and safety, the 174 CEV is an excellent choice for fulfilling the increasing demands of modern industrial environments.