Delta Electronics Series DNS Test Configurations, Design Considerations, Input Source Impedance

Page 8

TEST CONFIGURATIONS

 

TO OSCILLOSCOPE

 

L

VI(+)

 

 

BATTERY

2

100uF

 

Tantalum

 

 

VI(-)

Note: Input reflected-ripple current is measured with a simulated source inductance. Current is measured at the input of the module.

Figure 29: Input reflected-ripple test setup

COPPER STRIP

Vo

 

10uF

 

1uF

SCOPE

Resistive

 

 

tantalum

ceramic

Load

GND

Note: Use a 10μF tantalum and 1μF capacitor. Scope measurement should be made using a BNC connector.

Figure 30: Peak-peak output noise and startup transient measurement test setup.

 

 

 

 

 

 

CONTACT AND

 

 

 

 

 

 

DISTRIBUTION LOSSES

 

 

 

VI

Vo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II

 

 

 

 

 

Io

 

SUPPLY

 

 

 

 

 

LOAD

 

 

 

GND

 

 

 

 

 

 

 

 

 

 

 

 

CONTACT RESISTANCE

Figure 31: Output voltage and efficiency measurement test setup

Note: All measurements are taken at the module terminals. When the module is not soldered (via socket), place Kelvin connections at module terminals to avoid measurement errors due to contact resistance.

η = (Vo Io) ⋅100 %

Vi Ii

DS_DNS04SIP06A_07172008

DESIGN CONSIDERATIONS

Input Source Impedance

To maintain low noise and ripple at the input voltage, it is critical to use low ESR capacitors at the input to the module. Figure 32 shows the input ripple voltage (mVp-p) for various output models using 2x100 µF low ESR tantalum capacitor (KEMET p/n: T491D107M016AS, AVX p/n: TAJD107M106R, or equivalent) in parallel with 47 µF ceramic capacitor (TDK p/n:C5750X7R1C476M or equivalent). Figure 33 shows much lower input voltage ripple when input capacitance is increased to 400 µF (4 x 100 µF) tantalum capacitors in parallel with 94 µF (2 x 47 µF) ceramic capacitor.

The input capacitance should be able to handle an AC ripple current of at least:

Irms = Iout

Vout

Vout

Arms

 

Vin

⎜1

Vin

 

 

 

 

 

 

(mVp-p)

200

 

 

 

 

 

 

 

150

 

 

 

 

 

 

 

Ripple Voltage

100

 

 

 

 

 

 

 

50

 

 

 

 

 

 

3.3Vin

Input

 

 

 

 

 

 

 

0

 

 

 

 

 

 

5.0Vin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

 

 

 

2

3

4

Output Voltage (Vdc)

Figure 32: Input voltage ripple for various output models, Io = 6A (CIN = 2×100µF tantalum // 47µF ceramic)

 

80

 

 

 

 

-p)

40

 

 

 

 

Voltage(mVp

 

 

 

 

 

60

 

 

 

 

Ripple

20

 

 

 

 

Input

 

 

 

3.3Vin

 

 

 

 

 

 

 

 

 

 

0

 

 

 

5.0Vin

 

 

 

 

 

 

0

1

2

3

4

Output Voltage (Vdc)

Figure 33: Input voltage ripple for various output models, Io =

6A (CIN = 4×100µF tantalum // 2×47µF ceramic)

8

Image 8
Contents Delphi DNS, Non-Isolated Point of Load Technical Specifications Parameter DNS04S0A0R06PFDElectrical Characteristics Curves Converter efficiency vs. output current 3.3V outElectrical Characteristics Curves CON Output ripple & noise at 3.3Vin, 2.5V/6A outTurn on delay time at 5Vin, 3.3V/6A out Electrical Characteristics Curves Output short circuit current 5Vin, 0.75Vout Input Source Impedance Test ConfigurationsDesign Considerations Features Descriptions Safety ConsiderationsDesign Considerations CON Remote On/OffFeatures Descriptions CON Over-Temperature ProtectionRemote Sense Output Voltage ProgrammingVoltage Tracking Feature Descriptions CONVoltage Margining Sequential Start-up Ratio-MetricThermal Derating Thermal Testing SetupThermal Curves Thermal Considerations Ambient temperature and air velocity@Vin=3.3V, Vo=2.5V Mechanical Drawing Part Numbering System Model List