Texas Instruments MSC1211 manual Ride Raisonance Integrated Development Environment

Page 15

Quick Start

Figure 2–1. RIDE (Raisonance Integrated Development Environment)

Refer to the RIDE documentation and help menus for more information about how to interact with the RIDE environment. When a program is compiled, it can be immediately downloaded into the MSC1211EVM by using the MSC down- load utility program.

In the Project menu, select Options Tools, and then Create or Edit MSC1210_LOADER. Enter the path to the download.exe program that should be installed in your Windows directory. The download.exe file will need to be in the current directory or the Windows path. In the “translate from” and the “translate to” windows add “*.aof”. Select Advanced and you will have see the screen shown in Figure 2–2.

2-4

Image 15
Contents User’s Guide Important Notice EVM Important Notice EVM Warnings and Restrictions About This Manual Read This FirstTrademarks Contents Tables FiguresTopic IntroductionEVM System Overview MSC1211 DescriptionHost Computer Requirements Power RequirementsAnalog Inputs Prototyping AreaGetting Started Unpacking the MSC1211EVM Default Configration Quick StartUnpacking the MSC1211EVM Default ConfigurationFactory Jumper Settings Jumper identifier Description Default SettingQuick Start CD-Rom ContentsRide Raisonance Integrated Development Environment Operand Definition Downloader Operand DefinitionsOperation Jumpers Switches Connectors and Signals Circuit DescriptionsJumper/Function Reference Jumpers6 JMP6 Dvdd Power Source Select 3 JMP3 I2C Data SDA Enable4 JMP3 I2C Data SCL Enable 5 JMP5 Avdd Power Source Select3 SW3 Configuration Switch SwitchesReset Switch INT SwitchSW5 Configuration Control Switch 5 SW5 Emulation and Control SwitchJ8 RS-232 Port Pinout I/O Connectors and Signals1 J8 Serial0 RS-232 Connector Pin Signal RS-232 Direction Number Name At board Function2 J9 Serial1 RS-232 Connector Positive power supply input 3 J6, JMP5, JMP6, B1 Power ConnectorsUnregulated Power Input Connector B1 9V Battery ConnectorJ7 External Reference Input 4 J4 Analog InputsJ4 Analog Inputs 5 J7 External Reference Input10.TP1-6 Test Points 6 TP1-6 Test PointsProgramming and Host Communication Power SupplyCircuit Descriptions 1 MSC1211Physical Description Processor Schematic SchematicsPower and Analog Inputs Schematic Printed Circuit Board Layout Component LocationsPower-Supply CE Certification Bill of Materials Bill of MaterialsPhysical Description JMP1-JMP4

MSC1211 specifications

Texas Instruments MSC1211 is a highly integrated, low-power microcontroller designed specifically for applications requiring high accuracy and precision in signal processing. As a member of the Texas Instruments Microcontroller family, the MSC1211 targets industrial automation, medical instrumentation, and portable measurement devices, making it a versatile choice for designers across various industries.

One of the standout features of the MSC1211 is its 16-bit ADC (Analog-to-Digital Converter) that boasts a resolution of 16 bits, which enables the microcontroller to accurately convert analog signals into digital data. This high resolution makes it suitable for applications where precision is paramount, such as in medical devices that require accurate readings from sensors. The device can achieve sampling rates up to 1 kSPS (kilo Samples Per Second), making it efficient for real-time signal processing.

Another key characteristic of the MSC1211 is its low power consumption. The microcontroller employs advanced power management features, allowing it to operate in various power modes, making it ideal for battery-operated devices. The sleep mode dramatically reduces power consumption, extending the operational life of portable equipment significantly.

The MSC1211 features a built-in digital signal processor (DSP) that facilitates efficient data processing and filtering, enabling complex algorithms to be executed on the captured signals in real-time. This capability simplifies design considerations for developers, reducing the need for external DSP chips and enhancing system integration.

Connectivity is another significant aspect of the MSC1211. It supports standard communication protocols such as SPI (Serial Peripheral Interface) and I2C (Inter-Integrated Circuit), making it easy to interface with a variety of sensors and peripherals. This flexibility is crucial in today's interconnected world, allowing developers to design scalable systems that can accommodate future upgrades and enhancements.

Moreover, the microcontroller incorporates onboard memory, including RAM and Flash memory, ensuring ample storage for application codes and operational data. The flexibility in memory allocation allows developers to optimize their applications, balancing memory usage with processing speed.

In summary, the Texas Instruments MSC1211 microcontroller stands out for its high-resolution ADC, low power consumption, integrated DSP capabilities, and flexible communication options. These features make it an exceptional choice for applications in diverse fields such as medical devices, industrial automation, and portable measurement systems, ensuring precision and efficiency in performance.