Cypress CY7C107B AC Test Loads and Waveforms, Switching Characteristics5 Over the Operating Range

Page 4

CY7C107B

CY7C1007B

AC Test Loads and Waveforms

5V

R1 480Ω

5V

R1 480Ω

 

 

 

 

 

 

 

3.0V

 

 

 

 

 

 

 

 

 

ALL INPUT PULSES

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30 pF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

5 pF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

GND

 

 

 

 

 

 

 

 

INCLUDING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

255Ω

INCLUDING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

255Ω

≤ 3 ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JIG AND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JIG AND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCOPE

(a)

 

SCOPE

(b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

107-3

 

 

 

 

 

 

 

 

 

 

Equivalent to:

 

 

 

 

THÉ VENIN EQUIVALENT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT

 

 

 

 

 

 

 

167Ω

 

1.73V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90%

90%

10%

≤ 3 ns

107-4

Switching Characteristics[5] Over the Operating Range

 

 

 

 

 

7C107B-12

7C107B-15

7C107B-20

7C107B-25

7C107B-35

 

 

 

 

 

 

7C1007B-12

7C1007B-15

7C1007B-20

7C1007B-25

7C1007B-35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

 

 

 

Description

Min.

Max.

Min.

Max.

Min.

Max.

Min.

Max.

Min.

Max.

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

READ CYCLE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tRC

 

Read Cycle Time

12

 

15

 

20

 

25

 

35

 

ns

tAA

 

Address to Data Valid

 

12

 

15

 

20

 

25

 

35

ns

tOHA

 

Data Hold from Address

3

 

3

 

3

 

3

 

3

 

ns

 

 

Change

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tACE

 

 

 

LOW to Data Valid

 

12

 

15

 

20

 

25

 

35

ns

 

CE

 

 

 

 

 

 

tLZCE

 

 

 

LOW to Low Z[6]

3

 

3

 

3

 

3

 

3

 

ns

 

CE

 

 

 

 

 

tHZCE

 

 

 

HIGH to High Z[6, 7]

 

6

 

7

 

8

 

10

 

10

ns

 

CE

 

 

 

 

 

tPU

 

 

 

LOW to Power-Up

0

 

0

 

0

 

0

 

0

 

ns

 

CE

 

 

 

 

 

 

tPD

 

 

 

HIGH to Power-Down

 

12

 

15

 

20

 

25

 

35

ns

 

CE

 

 

 

 

 

 

WRITE CYCLE[8]

 

 

 

 

 

 

 

 

 

 

 

tWC

 

Write Cycle Time

12

 

15

 

20

 

25

 

35

 

ns

tSCE

 

 

 

LOW to Write End

10

 

12

 

15

 

20

 

25

 

ns

 

CE

 

 

 

 

 

 

tAW

 

Address Set-Up to Write

10

 

12

 

15

 

20

 

25

 

ns

 

 

End

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tHA

 

Address Hold from Write

0

 

0

 

0

 

0

 

0

 

ns

 

 

End

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tSA

 

Address Set-Up to Write

0

 

0

 

0

 

0

 

0

 

ns

 

 

Start

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tPWE

 

 

 

Pulse Width

10

 

12

 

15

 

20

 

25

 

ns

 

WE

 

 

 

 

 

tSD

 

Data Set-Up to Write End

7

 

8

 

10

 

15

 

20

 

ns

tHD

 

Data Hold from Write End

0

 

0

 

0

 

0

 

0

 

ns

tLZWE

 

 

 

HIGH to Low Z[6]

3

 

3

 

3

 

3

 

3

 

ns

 

WE

 

 

 

 

 

tHZWE

 

 

 

LOW to High Z[6, 7]

 

6

 

7

 

8

 

10

 

10

ns

 

WE

 

 

 

 

 

Notes:

5.Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified IOL/IOH and 30-pF load capacitance.

6.At any given temperature and voltage condition, tHZCE is less than tLZCE and tHZWE is less than tLZWE for any given device.

7.tHZCE and tHZWE are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.

8.The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Document #: 38-05030 Rev. **

Page 4 of 9

[+] Feedback

Image 4
Contents Features Logic Block Diagram Pin ConfigurationFunctional Description Selection GuideMaximum Ratings Electrical Characteristics Over the Operating RangeOperating Range Capacitance4 7C107B-25 7C107B-35Parameter Description Test Conditions Min Max Parameter Description Test Conditions Max UnitAC Test Loads and Waveforms Switching Characteristics5 Over the Operating RangeParameter Description Min Max Read Cycle No Switching WaveformsWrite Cycle No CE Controlled13 Write Cycle No WE Controlled13 High Impedance Data OUT Data UndefinedTruth Table Package DiagramsOrdering Information Lead 300-Mil Molded SOJ REV ECN no Change Description of Change

CY7C1007B, CY7C107B specifications

Cypress Semiconductor's CY7C107B and CY7C1007B are high-performance static random-access memory (SRAM) devices designed for demanding applications that require fast access times, low power consumption, and high reliability. Both of these memory chips are particularly suitable for use in a variety of electronic systems, including telecommunications, networking, industrial automation, and consumer electronics.

The CY7C107B is a 1 megabit SRAM, while the CY7C1007B is a larger 256 kilobit SRAM. They belong to the Cypress family of asynchronous SRAMs, which are known for their ease of integration into existing systems. One of the main features of these devices is their high-speed operation, with access times that can be as low as 10 nanoseconds. This rapid access allows for quick read and write cycles, making them ideal for applications where speed is critical.

Both memory chips are available in a variety of package options, including 28-pin DIP and 32-pin SOP, allowing for flexible use in different system designs. The CY7C107B and CY7C1007B also employ a dual-port architecture, which enhances their functionality by allowing multiple devices or processors to access the memory simultaneously without conflict. This characteristic is especially beneficial in systems requiring high-throughput data handling, such as video processing or high-speed networking.

Power consumption is another significant aspect of these SRAM devices. They are designed to operate efficiently, with low standby current and minimal active power usage. This makes them suitable for battery-powered and energy-sensitive applications, helping to extend the operating life of such devices.

In terms of reliability, the CY7C107B and CY7C1007B are built using advanced CMOS technology, which not only enhances performance but also increases durability and longevity. These SRAMs are capable of withstanding environmental stresses, thus ensuring consistent performance over time. Furthermore, they incorporate built-in data integrity features to protect against soft errors caused by radiation or other disturbances.

Overall, the Cypress CY7C107B and CY7C1007B SRAMs are robust and efficient solutions for high-speed memory needs. Their combination of fast access times, low power consumption, dual-port capabilities, and reliability makes them excellent choices for a wide range of applications in a rapidly evolving tech landscape. With their proven performance in various sectors, these memory chips continue to be a popular choice among engineers and designers seeking reliable memory solutions.