Maxtor ATA manual Before You Begin

Page 4

Before You Begin

Thank you for your interest in Maxtors QuickView 400/500GB Serial ATA hard disk drives. This manual provides technical information for OEM engineers and systems integrators regarding the installation and use of Maxtor Serial ATA hard drives. Please do not remove or cover up Maxtor factory-installed drive labels. They contain information required should the drive ever need repair. Drive repair should be performed only at an authorized repair center. For repair informa- tion, contact the Maxtor Product Support Center at 1-800-2MAXTOR.

CAUTION: Maxtor hard drives are precision products. Failure to follow these precautions and guidelines outlined here may lead to product failure, damage and invalidation of all warranties.

1BEFORE unpacking or handling a drive, take all proper electrostatic discharge (ESD) precautions, including personnel and equipment grounding. Stand-alone drives are sensitive to ESD damage.

2BEFORE removing drives from their packing material, allow them to reach room temperature.

3During handling, NEVER drop, jar, or bump a drive.

4Once a drive is removed from the Maxtor shipping container, IMMEDIATELY secure the drive through its mounting holes within a chassis. Otherwise, store the drive on a padded, grounded, antistatic surface. NEVER stack hard drives. This may cause dam- age to the drive.

Corporate Headquarters:

500 McCarthy Blvd.

Milpitas, California 95035

Tel: 408-894-5000

Fax: 408-362-4740

Image 4
Contents QuickView 400/500GB Serial ATA Product Manual January 13 Part NumberUL/CSA/VDE/TUV /RoHS PatentsPublication Number Part Number Before You Begin Table of Contents Sata BUS Interface and ATA Commands Introduction List of Figures List Of Tables Audience Manual OrganizationTerminology and Conventions ATAReferences General Description Product OverviewKEY Features Regulatory Compliance Standards Product EMI/EMS QualificationsHardware Requirements Installation Space RequirementsUnpacking Instructions 220-Pack Shipping Container Hardware Options Serial ATA Interface Connector Normal operation 3Gbps Limit Data Transfer Rate 1.5GbpsSerial ATA Bus Connector Adapter Board1Device plug connector pin definition ATA Bus Interface Connector J1, Section C MountingOrientation Following points should be noted5Mounting Screw Clearance and Mounting Screw Locations 6QuickView Serial ATA Mounting Dimensions Clearance Ventilation7Lengthwise Airflow Cooling Adapter Board Installation Techniques in Drive ConfigurationFor Systems with AN ATA Adapter Board Operating System LimitationsBig Drive Enabler Software download To use the Maxtor Big Drive EnablerInstallation Drive Configuration Model Number and CapacityPerformance Specifications Physical DimensionsMode Power Mode Definitions EPA Energy Star ComplianceEnvironmental Limits Parameter Operating NON-OPERATINGShock and Vibration PSDReliability Specifications Annualized Return RateStart/Stop Cycles Data ReliabilitySafety Regulatory Compliance Canadian Emissions StatementCommand Interface IntroductionMechanical Interface Electrical InterfaceSupported Commands Command Feature Register Code ValuesRead LOG Extension Identify Drive Command Content Description Capabilities Sata Bus Interface and ATA Commands Minimum PIO transfer cycle time without flow control Minor version number See Address Offset Reserved Area Boot, Incits TR272001 = release interrupt enabled General Purpose Logging feature set supported Content Description Removable Media Status Notification feature set support Security status Sata Bus Interface and ATA Commands Warranty Services Product SupportGlossary Glossary FCI Acronym for flux changes per inch. See also BPI Kilobyte Kb a unit of measure consisting of 1,024 210 bytes Millisecond ms One thousandth of a second .001 sec Glossary Sata Acronym for Serial ATA Glossary Index

ATA specifications

Maxtor ATA drives have played a significant role in the evolution of data storage technology, particularly during the late 20th and early 21st centuries. Known for their reliability and performance, these drives became a popular choice for consumers and businesses alike.

One of the main features of Maxtor ATA (Advanced Technology Attachment) drives is their interface. The ATA standard, which later evolved into the Parallel ATA (PATA) and Serial ATA (SATA) interfaces, allowed for the easy connection of hard drives to computers. This ensured broad compatibility across various systems, making it easier for users to upgrade their storage without facing compatibility issues.

The performance of Maxtor ATA drives was also a notable characteristic. With spinning speeds typically around 5400 RPM and 7200 RPM, these drives provided competitive read and write speeds compared to their contemporaries. The utilization of larger cache memory, often up to 8 MB or more, helped improve data transfer rates, ensuring quick access to files and applications.

Maxtor also deployed various technologies to enhance the reliability and longevity of their drives. One such innovation was the use of Shock Protection technologies, which minimized the risk of data loss due to physical shocks or impacts. This was particularly important for portable storage devices, where movement and jostling are common.

The drives were also designed with data integrity in mind. Maxtor incorporated features like S.M.A.R.T (Self-Monitoring, Analysis, and Reporting Technology) to help predict drive failures by monitoring various parameters. This proactive approach greatly assisted users in taking precautions against data loss.

Capacity-wise, Maxtor ATA drives varied significantly over the years, from a few gigabytes in the early 1990s to several terabytes by the time the brand was phased out. This scalability made Maxtor products suitable for both casual users and enterprises needing to store vast amounts of data.

In conclusion, the Maxtor ATA drives represented a significant step forward in storage technology, combining reliability, performance, and innovation. Their legacy continues to influence modern storage solutions, as many of the underlying principles and technologies have persisted into the current era of data storage. Though the brand is no longer in active development, its impact remains a noteworthy chapter in the history of computing.