Agilent Technologies 667xA, 665xA, 664xA Local Voltage Sensing, Inductive Loads, Battery Charging

Page 62

 

Series 664xA/665xA Power Supplies, Maximum OVP External Capacitance (F)

 

6641A

6642A

6643A

6644A

6645A

6651A

6652A

6653A

6654A

6655A

700,000

35,000

15,000

7,000

3,000

1.6 (F)

100,000

50,000

18,000

8,000

If a load capacitance approaches the specified limit, it is recommended that you do not make it a normal practice of tripping the OVP circuit and discharging the load capacitance through that circuit. This could cause long-term fatigue in some circuit components.

Because of its high output voltage, the Agilent 6555A generates very high currents when discharging the load capacitor under overvoltage conditions. Excessive currents can damage the supply. The peak discharge current is limited by the sum of the external capacitor's ESR (equivalent series resistance) and the series resistance of the external circuit. For the Agilent 6555A external capacitance limit of 8,000 ∝F, this total resistance must be not less than 56 milliohms. For smaller values of external capacitance, this resistance may be derated linearly.

Inductive Loads

Inductive loads provide no loop stability problems in CV mode. However, in CC mode inductive loads will form a parallel resonance network with the power supply's output capacitor. Generally, this will not affect the stability of the supply, but it may cause ringing of the current in the load. Ringing will not occur if the Q (quality factor) of the parallel resonant network is ≤ 0.5. Use the following formula to determine the Q of your output.

 

 

 

 

 

1

L

 

 

 

 

 

 

 

 

Q = Rint + Rext C

 

 

 

 

where: C = model-dependent internal capacitance (see below); L = inductance of the load; Rext = equivalent series

 

 

resistance of the load; Rint = model-dependent internal resistance (see below):

 

 

 

C =

6641A

6642A

6643A

6644A

6645A

6651A

6652A

6653A

6654A

6655A

4,200 ∝F

550 ∝F

180 ∝F

68 ∝F

33 ∝F

10,000 ∝F

1100 ∝F

440 ∝F

120 ∝F

50 ∝F

Rint =

7 mΩ

30 mΩ

50 mΩ

125 mΩ

300 mΩ

4 mΩ

20 mΩ

30 mΩ

80 mΩ

250 mΩ

Battery Charging

The power supply's OVP circuit contains a crowbar SCR that effectively shorts the output of the supply whenever OVP trips. If a battery (or other external voltage source) is connected across the output and the OVP is inadvertently triggered or the output is programmed below the battery voltage, the power supply will continuously sink a large current from the

battery. This could damage the supply. To avoid this, insert a reverse blocking diode in series with the output of the

supply. Connect the diode cathode to the + battery terminal and the diode anode to the supply output terminal. The diode may require a heat sink.

Note that if the OVP trips, you must remove the external current source in order to reset the internal SCR as part of clearing the OVP circuit (see Clearing the OV Condition in “Chapter 5 - Front Panel Operation”).

Local Voltage Sensing

Your power supply was shipped set up for local sensing. This means that the supply will sense and regulate its output at the output terminals, not at the load. Since local sensing does not compensate for voltage drops across screw terminals, bus bars, or load leads, local sensing should only be used in applications that require low output current or where load regulation is not critical.

Local sensing is obtained by placing the SENSE switch (see Figure 4-3a) in the Local position. The power supply is shipped with the switch in this position.

62 User Connections

Image 62
Contents Operating Guide Gpib DC Power Supplies Agilent Part No Microfiche Part No JanuaryCertification WarrantyLimitation of Warranty Exclusive RemediesSafety Summary GeneralPrinting History Safety Symbol DefinitionsSymbol Description HerstellerbescheinigungDeclaration of Conformity Manufacturer’s Name and Address6x4yA6x5yAE435xA.b.11.24doc.doc 6x4yA6x5yAE435xA.a.11.24doc.doc Table of Contents Introduction Getting Acquainted Programming the Output Connecting Series 667xA Power Supplies to the LoadController Connections Front Panel Calibration Introduction Equipment Required General ProcedureOption 601 Installation 135 Option 602 Installation 136 Calibration Over the Gpib 100Quick Document Orientation General InformationIntroduction Topic LocationOptions Safety ConsiderationsInstrument Identification Description AccessoriesFamily Power Agilent Models Support rails E3663AC are requiredAnalog Programming Front Panel ProgrammingRemote Programming Series Specifications Characteristics Output CharacteristicSpecifications and Supplemental Characteristics GeneralCurrent@ 50C Output Ratings VoltageCurrent@ 40C Current@ 55CMaximum Input Power Average Resolution VoltageTemperature Coefficients change per C Voltage Output Programming Range maximumMaximum AC Line Current Ratings Vac nominal Auto-Parallel ConfigurationAnalog Programming IP & VP Input Signal Maximum Reverse Bias CurrentDimensions Width Digital Port CharacteristicsSafety Compliance Complies with Gpib Interface CapabilitiesOutput Impedance Curves Typical General Information 50 a 25 a 15 a 51.188 a 25.594 a 15.356 a 214 a 095 a Rms 15 AM fuse Digital Port Characteristics Output Impedance Curves Typical General Information ±Current Current@ 0 to 55CVoltage 04% + Current0 . l % + ±Current Readback Typical Resolution VoltageMaximum Input VA and Power Analog Programming ±IP Current Monitor +IMCurrent Monitor Output +IM Output Signal Analog Programming IP & VP Input Signal VP Input ImpedanceIP to -IP Differential Input Signal Full-load programming speed up/down time time forWeight Net Output Characteristic Curve General InformationOutput Impedance Curves Typical General Information Output Ratings Voltage Current Current Monitor IM Output Signal VP Input Signal+ IP Input Signal Typical Common Mode Noise Current Rms Peak-to-peakLine fuse Maximum Reverse Voltage Current Sink CapabilityMaximum AC Line Current Ratings Range Rms line current Range Rms line currentHeight Maximum memory write cyclesDesigned to comply with Output Impedance Curves Typical Milliohms440 a 220 a 110 a Derated linearly 1%/C from 40 C to Drift Temperature Stability Max Power 6.67KW VoltageOvervoltage Protection OVP Typical Resolution Voltage Temperature Coefficients change per C9000 VA Output Characteristic Curve Vout Agilent 6692A Agilent 6690AAgilent 6691A Supplemental Gpib Characteristics for All Models Parameter Operator Replaceable Parts List Description Agilent Part NoOperator Replaceable Parts List Description Agilent Part No Damage Packaging Material InstallationInspection Items SuppliedTemperature Performance Location and TemperatureCleaning Bench OperationInstalling the Series 667xA Power Cord Input Power SourceInstalling the Series 664xA and 665xA Power Cord Connecting the Series 667xA Power Cord Installing the Series 668xA Power Cord Series 668xA/669xA Overall Wiring DiagramInstalling the Series 669xA Power Cord Connecting the Series 668xA Power CordConnecting the Series 669xA Power Cord Page Turn-On Checkout Turn-On CheckoutIntroduction Preliminary Checkout All Models Output Checkout All Models Power-On Checkout All ModelsUsing the Keypad All Models Shifted KeysPress Prot Clear Checking the Voltage FunctionOpen or Connected to a Voltmeter Checking the Current Function Case of Trouble Checking the Save and Recall Functions All ModelsDetermining the Gpib Address All Models Line FuseSeries 664xA and 665xA Supplies Series 667xA SuppliesPower-On Error Messages Error Messages All ModelsSelftest Errors Series 668xA SuppliesPower-On Selftest Errors Display Failed Test Checksum ErrorsRuntime Error Messages Error Display Failed TestRear Panel Connections All Models Load Wire Selection All ModelsUser Connections Pin No Fault/Inhibit Digital I/O Analog Connector All ModelsDigital Connector All Models Capacitive Loads Output IsolationLoad Considerations 6651A 6652A 6653A 6654AInductive Loads Battery ChargingLocal Voltage Sensing 6641A 6642A 6643A 6644A 6645A 6651A 6652A 6653A 6654A 6655ARemote Voltage Sensing Connecting One Supply to the Load StabilityConnecting Supplies in Auto-Parallel Insert Protection Diodes Enable OCP on the MasterProgram Slave 2 OVP to the Maximum Level External Voltage Control Connecting Supplies in SeriesWiring Considerations Connecting Series 667xA Power Supplies to the Load Programming4a. Series 667xA Rear Panel Output Connections 6671A 6672A 6673A 6674A 6675A Connecting the Sense Leads Connecting One Power Supply to a Single Load Connecting One Power Supply To Multiple LoadsConnecting Supplies in Auto-Parallel 4f. Series 667xA Series Connection Remote Sensing Optional Wiring Considerations -4g 4g. Series 667xA Analog Programming ConnectionsConnecting Series 668xA and 669xA Power Supplies to the Load Local Voltage Sensing Load Leads Remote Sense PointsInstructions supplied with the kit Connecting Supplies in Auto-Parallel Connecting Supplies in Series 5g. Series 668xA and 669xA Analog Programming Connections Linked Connections Controller ConnectionsStand-Alone Connections Controller Connections Front Panel Operation Front Panel OperationGetting Acquainted Unr DisplayStatus Annunciators DisSystem Keys Front Panel Controls and IndicatorsOutput Rotary Controls Voltage Function KeysEstablishing Initial Conditions Line Switch On / OffProgramming the Output Entry Keys Thru Press to select numerical valuesProgramming Overvoltage Protection Setting the OVP LevelProgramming Voltage Clearing The OVP Condition Programming CurrentChecking OVP Operation Programming Overcurrent Protection CV Mode vs. CC ModeSetting The OCP Protection Checking OCP OperationTurn-On Conditions Unregulated OperationSaving and Recalling Operating States Changing the Power Supply Gpib Address Setting the Gpib AddressTypes of Power Supply Gpib Addresses Action Display ShowsPage Equipment Required General ProcedureCalibration Parameters CalibratedFront Panel Calibration Series 668xA/669xA Setup Figure A-1. Calibration Test SetupCalibrating the OVP Trip Point Enabling the Calibration Mode PASWDlEntering Voltage Calibration Values Entering Current Calibration ValuesTable A-3. Gpib Calibration Error Messages Meaning Recovering From Calibration ProblemsCalibration Error Messages Calibration Language Dictionary Front Panel Corresponding Scpi CommandCalibration Over the Gpib Calcurrmon Series 668xA/669xA only Command SyntaxCommand Syntax CALibrateSAVE Parameters None Examples Calvolt Agilent Basic Calibration ProgramFigure A-2. Agilent Basic Calibration Program 570 ! Line 590 Password Must be Edited for Model Other than Steps 640 Through 670 not Used on 664x, 665xList of Equipment Operation VerificationTest Equipment Required Current Monitoring ResistorFigure B-1. Verification Test Setup Performing the Tests Current Programming and Readback Accuracy Sufficient size to carry the maximum rated currentModel Agilent 6642A Voltage Programming and Readback Model Agilent 6641A Voltage Programming and ReadbackCurrent Programming and Readback Model Agilent 6643A Voltage Programming and ReadbackModel Agilent 6645A Voltage Programming and Readback Model Agilent 6653A Voltage Programming and Readback Model Agilent 6651A Voltage Programming and ReadbackModel Agilent 6652A Voltage Programming and Readback Model Agilent 6654A Voltage Programming and ReadbackModel Agilent 6655A Voltage Programming and Readback Model Agilent 6673A Voltage Programming and Readback Model Agilent 6671A Voltage Programming and ReadbackModel Agilent 6672A Voltage Programming and Readback Model Agilent 6674A Voltage Programming and ReadbackModel Agilent 6675A Voltage Programming and Readback Model Agilent 6682A Voltage Programming and Readback Model Agilent 6680A Voltage Programming and ReadbackModel Agilent 6681A Voltage Programming and Readback Model Agilent 6683A Voltage Programming and ReadbackModel Agilent 6684A Voltage Programming and Readback Model Agilent 6692A Voltage Programming and Readback Model Agilent 6690A Voltage Programming and ReadbackModel Agilent 6691A Voltage Programming and Readback Page Line Voltage Conversion Series 664xA and 665xA Power SuppliesLine Voltage Conversion Series 667xA Power Supplies Figure C-2. Series 665xA Line Select JumpersSeries 668xA/669xA Power Supplies Figure C-4. Removing the Series 668xA/669xA Inner Cover Digital Port Functions Digital ConnectorFault/Inhibit Operation Figure D-2. Example of Inhibit Input Figure D-3. Examples of FLT Outputs IN/OUT 2 pin Changing the Port ConfigurationDigital I/O Operation Common pinRelay Link Operation CommonPage Current Loop Compensation Series 668xA Only Current Loop Compensation Series 668xA OnlyFunction of Loop Compensation Current Loop Compensation Series 668xA Only Current Loop Compensation Series 668xA Only Setting the Loop Compensation Switch Figure E-1. CC Loop Compensation Curves For Model 6684AAutoparallel Procedure Using Agilent 668xA Series Power Supplies in Autoparallel Figure F-1 Master/Slave Current DivisionOption 601 Installation Output Bus Bar OptionsMinus Bus Bar Plus Bus Bar Customer bus rails Option 602 InstallationBus Bar Spacer, 5040-1699 Output Bus Bar OptionsIndex IndexGpib 6665xA, 24 667xA, 29 668xA, 34 669xA, 39 output isolation Index Europe Asia Pacific United States Latin AmericaCanada Australia/New Zealand JapanManual Updates
Related manuals
Manual 70 pages 51.66 Kb Manual 67 pages 46.05 Kb

668xA, 669xA, 667xA, 664xA, 665xA specifications

Agilent Technologies has long been a pioneer in the production of high-performance electronic test and measurement instruments, particularly in the field of power sources. Among its notable offerings are the Agilent 667xA, 669xA, 665xA, 664xA, and 668xA series of power supplies. These instruments are designed to provide stable, reliable power for a variety of applications, including electronic testing, industrial processes, and research laboratories.

The Agilent 667xA series is characterized by its programmability and advanced measurement functions. These power supplies support a wide range of output voltages and currents, allowing for flexible configurations that cater to different testing needs. The built-in measurement capabilities enable users to monitor the voltage, current, and power with high precision, which is essential for ensuring optimal performance in electronic applications.

The Agilent 669xA series stands out with its high-power outputs, making it suitable for demanding applications. These power supplies deliver high voltage and current levels, making them ideal for testing high-performance devices, such as power amplifiers and motor drives. Additionally, the 669xA series includes features such as overvoltage protection and complex output sequencing to enhance the safety and reliability of the testing process.

The Agilent 665xA and 664xA series focus on delivering high accuracy and excellent regulation. These models are particularly known for their low noise operation, which is critical for sensitive applications where precision is paramount. The integrated programming capabilities allow users to automate testing sequences, thus improving efficiency in research and development settings.

The 668xA series features advanced digital signal processing that enhances the precision and stability of the output. Users benefit from features like remote sensing and monitoring, allowing feedback adjustments that maintain output accuracy despite cable losses. Furthermore, the 668xA models can integrate seamlessly with various test environments thanks to their LAN, GPIB, and USB connectivity options.

Overall, the Agilent 667xA, 669xA, 665xA, 664xA, and 668xA power supplies provide a comprehensive range of solutions for diverse electronic testing needs. With their advanced features, superb measurement capabilities, and robust performance, these instruments empower engineers and researchers to conduct their work with confidence, precision, and efficiency.