Allied Telesis C613-16164-00 REV E manual Static and dynamic inter-VRF routing

Page 9

Understanding VRF-lite

Static and dynamic inter-VRF routing

As mentioned above, "Inter-VRF communication" on page 8, in some circumstances it is required to (selectively) allow traffic between two interfaces that are not in the same VRF. This will be useful if there is common network equipment (e.g. Internet connections or shared resources) that multiple VRFs need to share.

Inter-VRF routing is achieved by statically or dynamically taking a route entry and its next-hop interface from one VRF, and adding it into the routing table of another. A dynamic inter-VRF route can be added by using the BGP route import/export feature. A static inter-VRF route can be added by a user command. For more information on static routing, see "Static inter- VRF routing" on page 17.

Static and dynamic inter-VRF communication can be used simultaneously or separately. Dynamic inter-VRF communication is only achieved via use of the BGP routing protocol. OSPF and RIP cannot be used to achieve inter-VRF communication.

Internally transferring routes between VRF instances is quite separate from the sharing of routes of a specific VRF routing domain, with external routers that are members of that same domain. As mentioned above, all dynamic routing protocols can be used to distribute routing information to external peer devices. OSPF, RIP, and BGP can all be used to dynamically distribute routes to external peers within VRF routing domains.

When BGP is used for dynamic inter-VRF communication, routes from other routing protocols (including connected routes, static routes, OSPF or RIP) are redistributed into a VRF instance’s BGP route table (BGP must be configured and associated with the VRF instance). Other VRF instances that are configured with BGP can selectively copy these routes into their own separate BGP route tables.

Inter-VRF route leakage interoperates with the exchange of route information. Routes learnt from external peers in one VRF domain can be leaked to other VRF instances and routes leaked into a VRF instance can then be advertised to external peers connected to that instance.

The details of dynamic inter-VRF routing are described in "Dynamic inter-VRF communication explained" on page 18.

Configure VRF-lite Page 9

Image 9
Contents What is VRF-lite? How To Configure VRF-lite IntroductionCommand summary Software feature licensesWho should read this document? Which products and software version does it apply to?Contents VRF GlossaryUnderstanding VRF-lite Route table and interface management with VRF-lite VRF-lite security domainsInterface management with VRF Vlan5Adding a VRF-aware static ARP Route management with VRFInter-VRF communication Static and dynamic inter-VRF routing For example VRF-lite features in AW+Route limiting per VRF instance VRF aware services includeVRF-aware utilities within AW+  Ping Telnet client  SSH client TCP dump Awplusconfig# access-list standard Configuring VRF-liteAwplusconfig-if#switchportaccess vlanx Family Awplusconfig-route-map#match ip Ip route 192.168.50.0/24 Ip route vrf green 192.168.1.0/24 Static inter-VRF routingForwarding Information Base FIB and routing protocols Dynamic inter-VRF communication explainedBGP Inter-VRF communication via BGP Route-target import ASNVRFinstance For example Using the route-target commandRoute-target both ASNVRFinstance For example Can be replaced withIf VRF red initially includes Also, if VRF shared configuration includesIf VRF shared initially includes Via BGP IVR, VRF shared will end up with the routesThen via BGP IVR, VRF red will end up with the routes If VRF shared configuration includesViewing source VRF and attribute information for a prefix How VRF-lite security is maintainedMultiple VRFs without inter-VRF communication Simple VRF-lite configuration examples26 Configure VRF-lite Vlan 28 Configure VRF-lite Configure VRF-lite 30 Configure VRF-lite Configure VRF-lite 32 Configure VRF-lite Inter-VRF configuration examples with Internet access Configuration Configure VRF-lite Example B Configuration 38 Configure VRF-lite Configure VRF-lite Example C Configuration 42 Configure VRF-lite Configure VRF-lite Configuring a complex inter-VRF solution Network description Each VLANs is associated with a VRF instance VRF communication plan Configuration breakdown Configure VRF-lite Configure Vrfs Configure the hardware ACLs This example, three access groups are attached to port Within the same IP subnet that the switch port is a member192.168.43.0/24 via the shared VRF Configure Vlan Database Configure IP Addresses Configure VRF-lite Configure Dynamic Routing Configure VRF-lite 56 Configure VRF-lite Configure Static Routing Complete show run output from VRF device is below Configure VRF-lite 60 Configure VRF-lite Configure VRF-lite IP route table from VRF device is below VRF blue Hostname Internetrouter Hostname sharedrouter N1 Ospf Nssa Hostname redospfpeerHostname greeniBGPpeer Hostname bluerippeer Hostname orangerouter Hostname orangeospfpeer VCStack and VRF-lite Other features used in this configurationStack provisioning GreyVirtual Chassis ID X610 VCStack configurationX900 configuration 74 Configure VRF-lite Communication plan Sharing VRF routing and double tagging on the same portGreen PortConfigurations X610 aX610 B Configure VRF-lite Additional notes BGP configuration tips 80 Configure VRF-lite VRF device Red router vlan database Red router Route Limits Configuring static route limitsConfiguring Dynamic route limits Allowed number of fib routes excluding Connect and Static100 Syntax No max-fib-routesVRF-lite usage guidelines Useful VRF-related diagnostics command list GeneralRouting general Routing protocols IP prefix network, e.g TCPdump HW platform table commands

C613-16164-00 REV E specifications

The Allied Telesis C613-16164-00 REV E is a robust networking device designed to enhance connectivity and communication within enterprise environments. Renowned for its reliability and efficiency, this device serves as an ideal choice for organizations seeking to improve their network infrastructure.

At its core, the C613-16164-00 REV E is a part of Allied Telesis' suite of products that adhere to high-performance standards. One of the main features is its support for both Layer 2 and Layer 3 networking, making it versatile enough to handle a variety of network configurations. This capability allows for seamless integration into different network architectures, whether for simple local area networks (LANs) or more advanced setups with routing capabilities.

Another significant characteristic of the C613-16164-00 REV E is its high-speed data transfer capabilities. With support for Gigabit Ethernet, the device ensures that data can be transmitted quickly and efficiently across the network. This is particularly important for businesses that rely on heavy data usage and need to maintain performance standards even during peak hours.

Additionally, the C613-16164-00 REV E features advanced security measures, including VLAN support and port security configurations, which help protect sensitive information and prevent unauthorized access. This is essential for businesses that handle confidential data and must comply with industry regulations.

In terms of manageability, the device supports SNMP (Simple Network Management Protocol), allowing for easy monitoring and management of network resources. Network administrators can efficiently manage the device and optimize performance with minimal effort, improving overall productivity.

The design of the C613-16164-00 REV E is also noteworthy; it is built for durability, often featuring a compact form factor that makes installation straightforward without compromising on performance. Its compatibility with various Allied Telesis products ensures that organizations can build a cohesive network ecosystem.

In conclusion, the Allied Telesis C613-16164-00 REV E stands out as an excellent networking solution characterized by its support for multiple networking layers, high-speed data transfer, and robust security features. Ideal for both small to medium enterprises and larger organizations, it helps ensure that businesses can maintain efficient and secure operations in a constantly evolving digital landscape.