Cisco Systems 12.4 manual Troubleshooting Tips, Router# show mpls ldp neighbor detail

Page 42

Troubleshooting Tips

Configuration Examples for MPLS LDP Session Protection

Up time: 21:09:56

 

LDP discovery sources:

 

Targeted Hello

10.0.0.5 ->

10.0.0.3, active

Addresses bound

to peer LDP

Ident:

10.3.104.3

10.0.0.2

10.0.0.3

Step 3 show mpls ldp neighbor detail

Issue this command to check that the MPLS LDP Session Protection state is Ready or Protecting. If the second last line of the output shows Incomplete, the Targeted Hello Adjacency is not up yet.

Example:

Router# show mpls ldp neighbor detail

Peer LDP Ident: 10.16.16.16:0; Local LDP Ident 10.15.15.15:0 TCP connection: 10.16.16.16.11013 - 10.15.15.15.646

State: Oper; Msgs sent/rcvd: 53/51; Downstream; Last TIB rev sent 74

Up time: 00:11:32; UID: 1; Peer Id 0; LDP discovery sources:

Targeted Hello 10.15.15.15 -> 10.16.16.16, active, passive; holdtime: infinite, hello interval: 10000 ms

Addresses bound to peer LDP Ident:

10.0.0.210.16.16.16 10.101.101.101 11.0.0.1

Peer holdtime: 180000 ms; KA interval: 60000 ms; Peer state: estab

Clients: Dir Adj Client

LDP Session Protection enabled, state: Protecting duration: infinite

Troubleshooting Tips

Use the clear mpls ldp neighbor command if you need to terminate an LDP session after a link goes down. This is useful for situations where the link needs to be taken out of service or needs to be connected to a different neighbor.

To enable the display of events related to MPLS LDP Session Protection, use the debug mpls ldp session protectioncommand.

Configuration Examples for MPLS LDP Session Protection

The figure below shows a sample configuration for MPLS LDP Session Protection.

Figure 3

MPLS LDP Session Protection Example

R1

redundancy

no keepalive-enable

MPLS LDP Configuration Guide, Cisco IOS Release 12.4

36

Image 42
Contents Mpls LDP Configuration Guide, Cisco IOS Release Page N T E N T S Mpls LDP Inbound Label Binding Filtering Mpls LDP Graceful Restart Contents Mpls LDP Configuration Guide, Cisco IOS Release Finding Feature Information Prerequisites for Mpls LDPInformation About Mpls LDP LDP and TDP Support Introduction to Mpls LDPMpls LDP Functional Overview Train and ReleaseIntroduction to LDP Sessions Train and Release LDP/TDP SupportNondirectly Connected Mpls LDP Sessions How to Configure Mpls LDP Enabling Directly Connected LDP Sessions,Step Command or Action Purpose Enabling Directly Connected LDP SessionsExample Command or Action Purpose StepStep Command or Action Establishing Nondirectly Connected Mpls LDP SessionsExamples Mpls label protocol ldp tdp both Interface tunnelnumber Tunnel destination ip-address Saving Configurations Mpls Tag Switching Commands Specifying the LDP Router ID Routerconfig# mpls ldp Router-id pos2/0/0 Preserving QoS Settings with Mpls LDP Explicit Null Following example displays the LDP router IDInterface type number Command or Action Purpose Local Outgoing Prefix Protecting Data Between LDP Peers with MD5 Authentication Summary Steps Mpls ldp neighbor vrf vpn-nameip Mpls LDP Configuration Examples Configuring Directly Connected Mpls LDP Sessions ExampleRouter 1 Configuration Router 2 ConfigurationRouter 3 Configuration Establishing Nondirectly Connected Mpls LDP Sessions Example Router 4 Configuration Router 5 ConfigurationRouter 6 Configuration Additional References Feature Information for Mpls Label Distribution Protocol Technical Assistance Description LinkReleases Feature Information Router-idFeature Name Releases Feature Name Releases Feature Information Page Restrictions for Mpls LDP Session Protection Information About Mpls LDP Session ProtectionMpls LDP Session Protection Customizations How to Configure Mpls LDP Session Protection Enabling Mpls LDP Session ProtectionRouterconfig-if#mpls label protocol ldp Verifying Mpls LDP Session Protection Troubleshooting Tips Router# show mpls ldp neighbor detailIp classless Redundancy Full-duplex Interface Ethernet5/0/2 MIBs MIBs Link RFCs TitleCommand Reference Mpls LDP Inbound Label Binding Filtering RestrictionsHow to Configure Mpls LDP Inbound Label Binding Filtering Configuring Mpls LDP Inbound Label Binding FilteringIp access-list standard access-list-number Verifying that Mpls LDP Inbound Label Bindings are Filtered Router# show mpls ldp neighbor 10.12.12.12 detailAccess-list-number Access-list-name LDP Specification, draft-ietf-mpls-ldp-08.txt Technical Assistance Description Link Releases Feature Information GlossaryMpls LDP Inbound Label Binding Filtering Page Mpls LDP Autoconfiguration Restrictions for Mpls LDP AutoconfigurationMpls LDP Autoconfiguration on Ospf and IS-IS Interfaces Information About Mpls LDP AutoconfigurationHow to Configure Mpls LDP Autoconfiguration Configuring Mpls LDP Autoconfiguration with Ospf InterfacesGlobally enables hop-by-hop forwarding Router ospf process-id Verifying Mpls LDP Autoconfiguration with Ospf Router# show mpls interfaces Serial 2/0 detail Configuring Mpls LDP Autoconfiguration with IS-IS Interfaces Command or Action Purpose StepEnables IS-IS for IP on the interface Enables the LDP for interfaces that belong to an IS-IS Verifying Mpls LDP Autoconfiguration with IS-IS Router# show isis mpls ldpMpls LDP Autoconfiguration with Ospf Example Troubleshooting TipsMpls LDP Autoconfiguration with IS-IS Examples Command ReferenceFeature Information for Mpls LDP Autoconfiguration Feature Information for Mpls LDP Autoconfiguration Mpls LDP Graceful Restart Information About Mpls LDP Graceful Restart How Mpls LDP Graceful Restart WorksHow to Configure Mpls LDP Graceful Restart Configuring Mpls LDP Graceful RestartMpls ip Mpls label protocol ldptdpboth Configuration Example for Mpls LDP Graceful Restart Verifying the ConfigurationRouter 1 configured with LDP GR Router 2 configured with LDP SSO/NSFRouter 3 configured with LDP SSO/NSF Mpls label protocol ldp mpls traffic-eng tunnels mpls ipMpls Label Distribution Protocol Feature Information for Mpls LDP Graceful Restart Feature Information for Mpls LDP Graceful Restart

12.4 specifications

Cisco Systems has consistently been at the forefront of networking technology, and one of its notable software releases is IOS version 12.4. This version introduced significant enhancements and features that continue to influence networking practices. IOS 12.4 was specifically designed to accommodate the growing demands of network reliability, scalability, and advanced functionalities.

One of the primary characteristics of IOS 12.4 is its enhanced security features. The version integrates advanced security protocols, including improvements in IPsec, which allows for secure communication across potentially insecure networks. Additionally, it supports firewall technologies and access control lists (ACLs), ensuring that organizations can implement stringent security measures tailored to their traffic requirements.

Another defining feature of IOS 12.4 is its support for IPv6. As the internet continued to grow, the need for expanded address space became critical. With IOS 12.4, Cisco provided robust capabilities for transitioning from IPv4 to IPv6, ensuring that network managers could adopt the newer standard without sacrificing performance or reliability. This included support for routing protocols and other networking functions that were essential in an IPv6 environment.

Performance improvements were also a key aspect of IOS 12.4. The release optimized routing protocols, including Enhanced Interior Gateway Routing Protocol (EIGRP) and Open Shortest Path First (OSPF), to enhance convergence times and reduce latency. This effectively contributed to improved network efficiency and uptime.

Cisco also included advanced Quality of Service (QoS) capabilities in IOS 12.4, allowing organizations to prioritize critical traffic. Features such as class-based weighted fair queuing and low-latency queuing became invaluable for organizations requiring seamless voice and video communications over IP networks. This focus on QoS demonstrated Cisco's understanding of the growing importance of multimedia applications in modern business environments.

With a set of stable and scalable routing features, IOS 12.4 supports a variety of platforms, enabling businesses to deploy it across different networking hardware to suit their needs. The modularity of this IOS version makes it flexible for various applications, from small business networks to large enterprise systems.

In summary, Cisco Systems' IOS 12.4 brought forth a wealth of features aimed at enhancing security, performance, and flexibility. Through improved routing capabilities, strong IPv6 support, and advanced QoS features, this version laid the foundation for many of the networking principles that organizations still utilize today.