Fluke 2470 specifications Description, General Information

Page 23

Chapter 3

Description

General Information

The RUSKA Gas Lubricated Piston Pressure Gauge, model 2470 is a pneumatic pressure standard designed for the accurate generation and measurement of gas pressures to 3000 psig. This measurement is accomplished in the basic manner of using the fundamental pressure equation PRESSURE = FORCE/AREA (see Chapter 2, General Piston Pressure Gauge Considerations, for more information). The gauge is used as the precision measuring device in the RUSKA Gas Lubricated Piston Pressure Gauge System.

It may be seen from the above general equation that when a known force produced by a known mass is applied to a piston of a known area, a pressure will be produced that may be calculated (see Appendix A for detailed information). The RUSKA gauge is arranged for the application of carefully determined masses on a piston of known area.

A key feature of the gauge is its ability to accurately reproduce its performance at the lower pressures. The low viscosity of the gas provides excellent lubrication for the close-fitting piston/cylinder assembly. Relative motion between the piston and cylinder is necessary and is obtained by hand rotation of the masses and table which will then distribute the gas molecules throughout the annulus of the assembly. It is the relative absence of friction between piston and cylinder walls that characterizes the performance for which the gauge is so highly respected.

The nominal range of pressure (interval) over which the gauge is capable of operating is the span from 1.4 kPa (0.2 psig) to 20.6 MPa (3000 psig). This interval is covered by three interchangeable piston/cylinder assemblies having sufficient overlap for establishing continuity of measurement and for making detailed investigations of subintervals within the total range (span).

Some of the most important industrial uses of the gas lubricated piston pressure gauge is that of a standard for calibrating transducers, Bourdon-tube type gauges, manometers, and other dead weight gauges. Frequently, the gauge is used in combination with the pressure null transducer (RUSKA model 2413 or similar) for cross float calibrations between gaseous and hydraulic media.

3-1

Image 23
Contents Ruska Limited Warranty and Limitation of Liability Table of Contents Appendices List of Tables Ruska List of Figures Ruska Compressed Gas How to Contact FlukeSafety Information IntroductionOxygen Compatibility Symbols Used in this ManualHeavy Weights Lubricants and SealsLow Range Piston SpecificationsHumidity Range AccuracyTypes of Piston Pressure Gauges General Piston Pressure Gauge ConsiderationsControlled Clearance Cylinder Measurement of Pressure with the Piston Pressure Gauge CalculationsBuoyant Effect of the Air Elastic Distortion of the CylinderGravity Reference Plane of Measurements TemperatureReference Plane Determination Is the density of the test media Bibliography CrossfloatingGeneral Piston Pressure Gauge Considerations Ruska General Information DescriptionDescription of the Gauge Base Description of the Mass SetDescription Ruska Introduction InstallationAlways remove the thermometer before shipping the gauge base Installation Ruska Operation PrecautionsGeneral Low Range Piston AssemblyOperation 24-580 Bearing 2460-4-25 2460-5-6 Handling the Low Range Piston and Cylinder Step Low Range Piston and Cylinder Showing O-Ring Groove Mid Range Piston Assembly Section View, Mid Range Piston/Cylinder Thrust Cylinder Assembly Spacer Bearing 2460-70-2 2460-70-3 11. Retaining Nut and Bearing High Range Piston Assembly12. Section View, High Range Piston/Cylinder 13. Parts Required for High Range Piston Operation Gauge Pressures Establishing Pressure16. Float Position Automating the Calculations and Data StorageLeaks Maintenance of the GaugeRuska General Information and Preparation Piston / Cylinder Cleaning InstructionsCleaning the Low Range Piston/Cylinder Assembly Functional Testing of Piston/Cylinder AssembliesPiston / Cylinder Cleaning Instructions Preparations for Cleaning the Low Range Cylinder Preparing the Low Range Cleaning Tool Step Mid Range Piston/Cylinder Materials for Cleaning the Mid Range Piston/CylinderPreparing the Mid Range Cleaning Tool Materials for Cleaning the High Range Piston Cylinder Cleaning the High Range Piston/Cylinder AssemblyCleaning the High Range Piston/Cylinder Assembly Gmq33.bmp 13. Cleaning the High Range Cylinder 14. Drying the High Range Cylinder Explanation of Pressure Calculation Worksheet For English Units Temp. Coef. x actual temperature expected temperatureFor SI Units K2 = 1/ g1 1 − ρa / ρbAe t Explanation of Pressure Calculation Worksheet a Ruska Date Ruska Expected Temperature, t Ruska Nitrogen Density English Units 1,000 to 15,000 Psig Equation A-4 Air DensityEquation A-4 Air Density Nitrogen Density English Units 0 to 1000 PsigHelium Density SI Units 0 to 6.9 MPa Nitrogen Density SI Units 0 to 6.9 MPaNitrogen Density SI Units 6.9 MPa to 100 MPa Zero Air Density SI Units 0 MPa to 20.7 MPaTable B-1. Conversion Factors To Convert From Multiply By Conversion FactorsRuska Glossary GlossaryDUT +INF, -INF Pressure Factor Sink Rate Ruska

2470 specifications

The Fluke 2470 is a versatile and highly regarded data acquisition system designed for a wide range of applications in electrical testing and measurement. Known for its precision and reliability, the Fluke 2470 is particularly popular among professionals who require accurate data for analysis and reporting.

One of the standout features of the Fluke 2470 is its high-performance data acquisition capabilities. It supports multiple channel inputs, allowing users to monitor and log various electrical parameters simultaneously. This multi-channel functionality is essential for complex testing scenarios where multiple variables must be tracked in real time.

The Fluke 2470 utilizes advanced measurement technologies, including a high-resolution analog-to-digital converter that ensures superior measurement accuracy. This technology is crucial for applications that demand precise readings, such as research and development, quality assurance, and compliance testing.

Additionally, the device is equipped with a variety of input types, including voltage, current, and temperature, making it suitable for a wide array of testing applications. The flexibility in input compatibility allows users to customize their measurements according to specific project requirements.

Another significant characteristic of the Fluke 2470 is its user-friendly interface and software integration. The accompanying software enables users to configure measurements easily, set up logging intervals, and analyze data visually. This intuitive setup minimizes the learning curve for new users and enhances productivity.

Data storage is another critical feature of the Fluke 2470. It provides ample internal memory, allowing users to record extensive datasets over long periods without the need for continuous monitoring. The stored data can be easily exported for further analysis, making it ideal for long-term testing projects.

Moreover, the Fluke 2470 excels in terms of portability and ruggedness. Its compact design is built to withstand demanding environments, ensuring that it can deliver accurate data in the field just as reliably as in the lab.

In conclusion, the Fluke 2470 combines high-performance data acquisition, multi-channel capabilities, advanced measurement technologies, and user-friendly features, making it a top choice for professionals in a variety of fields. Its robust design ensures that it meets the demands of rigorous testing while providing accurate and reliable data, crucial for informed decision-making.