Fluke 2470 specifications Temperature, Reference Plane of Measurements

Page 17

General Piston Pressure Gauge Considerations

2

Measurement of Pressure with the Piston Pressure Gauge

Although the trend is swinging toward the use of true mass in favor of apparent mass, there is a small advantage in the use of the latter. When making calculations for air buoyancy from values of apparent mass, it is unnecessary to know the density of the mass. If objects of different densities are included in the calculation, it is not necessary to distinguish the difference in the calculations. This advantage is obtained at a small sacrifice in accuracy and is probably not justified when considering the confusion that is likely to occur if it becomes necessary to alternate in the use of the two systems.

A satisfactory approximation of the force on a piston that is produced by the load is given by:

 

 

 

pAIR

F = M A 1

 

g

 

 

pBRASS

Where:

Fis the force on the piston

M A

is the mass of the load, reported as "apparent mass vs. brass

pAIR

standards"

Is the density of the air

pBRASS

Is the density of brass (8.4 g/cm³)

gis the acceleration due to local gravity

Temperature

Piston pressure gauges are temperature sensitive and must, therefore, be corrected to a common temperature datum.

Variations in the indicated pressure resulting from changes in temperature arise from the change in effective area of the piston due to expansion or contractions caused by temperature changes. The solution is a straightforward application of the thermal coefficients of the materials of the piston and cylinder. The area corresponding to the new temperature may be found by substituting the difference in working temperature from the reference temperature and the thermal coefficient of area expansion in the relation as follows:

A0(t ) = A0(r ) [ 1 + c (t r) ]

Where:

A0(t )

is the effective area at temperature, t

A0(r )

is the effective area at zero pressure and reference temperature, r

cis the coefficient of thermal expansion

Reference Plane of Measurements

The measurement of pressure is linked to gravitational effects on the pressure medium. Whether in a system containing a gas or a liquid, gravitational forces produce vertical pressure gradients that are significant and must be evaluated. Fluid pressure gradients and buoyant forces on the piston of a pressure balance require the assignment of a definite position at which the relation P = F / A exists.

2-5

Image 17
Contents Ruska Limited Warranty and Limitation of Liability Table of Contents Appendices List of Tables Ruska List of Figures Ruska Safety Information How to Contact FlukeIntroduction Compressed GasHeavy Weights Symbols Used in this ManualLubricants and Seals Oxygen CompatibilityLow Range Piston SpecificationsHumidity Range AccuracyTypes of Piston Pressure Gauges General Piston Pressure Gauge ConsiderationsControlled Clearance Cylinder Measurement of Pressure with the Piston Pressure Gauge CalculationsBuoyant Effect of the Air Elastic Distortion of the CylinderGravity Reference Plane of Measurements TemperatureReference Plane Determination Is the density of the test media Bibliography CrossfloatingGeneral Piston Pressure Gauge Considerations Ruska General Information DescriptionDescription of the Gauge Base Description of the Mass SetDescription Ruska Introduction InstallationAlways remove the thermometer before shipping the gauge base Installation Ruska Operation PrecautionsGeneral Low Range Piston AssemblyOperation 24-580 Bearing 2460-4-25 2460-5-6 Handling the Low Range Piston and Cylinder Step Low Range Piston and Cylinder Showing O-Ring Groove Mid Range Piston Assembly Section View, Mid Range Piston/Cylinder Thrust Cylinder Assembly Spacer Bearing 2460-70-2 2460-70-3 11. Retaining Nut and Bearing High Range Piston Assembly12. Section View, High Range Piston/Cylinder 13. Parts Required for High Range Piston Operation Gauge Pressures Establishing Pressure16. Float Position Automating the Calculations and Data StorageLeaks Maintenance of the GaugeRuska General Information and Preparation Piston / Cylinder Cleaning InstructionsCleaning the Low Range Piston/Cylinder Assembly Functional Testing of Piston/Cylinder AssembliesPiston / Cylinder Cleaning Instructions Preparations for Cleaning the Low Range Cylinder Preparing the Low Range Cleaning Tool Step Mid Range Piston/Cylinder Materials for Cleaning the Mid Range Piston/CylinderPreparing the Mid Range Cleaning Tool Materials for Cleaning the High Range Piston Cylinder Cleaning the High Range Piston/Cylinder AssemblyCleaning the High Range Piston/Cylinder Assembly Gmq33.bmp 13. Cleaning the High Range Cylinder 14. Drying the High Range Cylinder Explanation of Pressure Calculation Worksheet For English Units Temp. Coef. x actual temperature expected temperatureFor SI Units K2 = 1/ g1 1 − ρa / ρbAe t Explanation of Pressure Calculation Worksheet a Ruska Date Ruska Expected Temperature, t Ruska Equation A-4 Air Density Equation A-4 Air DensityNitrogen Density English Units 0 to 1000 Psig Nitrogen Density English Units 1,000 to 15,000 PsigNitrogen Density SI Units 6.9 MPa to 100 MPa Nitrogen Density SI Units 0 to 6.9 MPaZero Air Density SI Units 0 MPa to 20.7 MPa Helium Density SI Units 0 to 6.9 MPaTable B-1. Conversion Factors To Convert From Multiply By Conversion FactorsRuska Glossary GlossaryDUT +INF, -INF Pressure Factor Sink Rate Ruska

2470 specifications

The Fluke 2470 is a versatile and highly regarded data acquisition system designed for a wide range of applications in electrical testing and measurement. Known for its precision and reliability, the Fluke 2470 is particularly popular among professionals who require accurate data for analysis and reporting.

One of the standout features of the Fluke 2470 is its high-performance data acquisition capabilities. It supports multiple channel inputs, allowing users to monitor and log various electrical parameters simultaneously. This multi-channel functionality is essential for complex testing scenarios where multiple variables must be tracked in real time.

The Fluke 2470 utilizes advanced measurement technologies, including a high-resolution analog-to-digital converter that ensures superior measurement accuracy. This technology is crucial for applications that demand precise readings, such as research and development, quality assurance, and compliance testing.

Additionally, the device is equipped with a variety of input types, including voltage, current, and temperature, making it suitable for a wide array of testing applications. The flexibility in input compatibility allows users to customize their measurements according to specific project requirements.

Another significant characteristic of the Fluke 2470 is its user-friendly interface and software integration. The accompanying software enables users to configure measurements easily, set up logging intervals, and analyze data visually. This intuitive setup minimizes the learning curve for new users and enhances productivity.

Data storage is another critical feature of the Fluke 2470. It provides ample internal memory, allowing users to record extensive datasets over long periods without the need for continuous monitoring. The stored data can be easily exported for further analysis, making it ideal for long-term testing projects.

Moreover, the Fluke 2470 excels in terms of portability and ruggedness. Its compact design is built to withstand demanding environments, ensuring that it can deliver accurate data in the field just as reliably as in the lab.

In conclusion, the Fluke 2470 combines high-performance data acquisition, multi-channel capabilities, advanced measurement technologies, and user-friendly features, making it a top choice for professionals in a variety of fields. Its robust design ensures that it meets the demands of rigorous testing while providing accurate and reliable data, crucial for informed decision-making.