Intel Embedded Microcontroller, 8XC251SA, 8XC251SP, 8XC251SQ manual CCAP4H CCAP4L, Wdte CMOD.6 ECOM4

Page 164

8XC251SA, SB, SP, SQ USER’S MANUAL

The PCA WDT generates a reset signal each time a match occurs. To hold off a PCA WDT reset, the user has three options:

periodically change the comparison value in CCAP4H/CCAP4L so a match never occurs

periodically change the PCA timer/counter value so a match never occurs

disable the module 4 reset output signal by clearing the WDTE bit before a match occurs, then later re-enable it

The first two options are more reliable because the WDT is not disabled as in the third option. The second option is not recommended if other PCA modules are in use, since the five modules share a common time base. Thus, in most applications the first option is the best one.

 

PCA Timer/Counter

Compare/Capture

 

 

 

 

 

Count

Module

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input

CH

CL

CCAP4H CCAP4L

 

 

 

 

 

 

(8 Bits)

(8 Bits)

(8 Bits)

(8 Bits)

 

 

 

 

 

 

 

 

16-Bit

Match

 

 

PCA WDT Reset

 

 

 

Comparator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enable

 

 

WDTE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CMOD.6

 

 

 

 

 

X

ECOM4

0

0

1

X

0

X

 

 

7

 

CCAPM4 Mode Register

 

 

0

 

"0"

 

 

 

 

 

 

 

 

Reset

 

 

 

 

 

 

 

 

 

Write to

 

 

 

 

 

 

 

 

 

CCAP4L

 

 

 

 

 

X = Don't Care

 

 

 

"1"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Write to CCAP4H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A4165-01

Figure 9-4. PCA Watchdog Timer Mode

9-10

Image 164
Contents Page Page May 1996 Order Number Copyright Intel Corporation Contents 8XC251SA, SB, SP, SQ USER’S Manual Chapter TIMER/COUNTERS and Watchdog Timer Chapter Serial I/O Port Framing BIT Error Detection Modes 1, 2, Modes of OperationMultiprocessor Communication Modes 2 Automatic Address RecognitionChapter External Memory Interface Appendix a Instruction SET Reference Figures 10-1 13-24 Address Space for Example Tables INC/DEC Tables Page Guide to This Manual Page Manual Contents Chapter Guide to this Manual8XC251SA, SB, SP, SQ USER’S Manual Notational Conventions and Terminology ItalicsInstructions Units of Measure Related DocumentsData Sheet Application NotesApplication Support Services Intel Application Support ServicesService Canada Asia-Pacific and Japan Europe World Wide Web CompuServe ForumsFaxBack Service Bulletin Board System BBSGuide to this Manual Page Architectural Overview Page Chapter Architectural Overview Functional Block Diagram of the 8XC251SA, SB, SP, SQ MCS 251 Microcontroller CoreXC251SA, SB, SP, SQ Features 8XC251SA, SB, SP, SQ ArchitectureOn-chip Memory Device OTPROM/EPROMMCS 251 Microcontroller Core 1 CPU SRC1 SRC2ALU DSTClock and Reset Unit XTAL1Timer/Counters and Watchdog Timer Interrupt HandlerOn-chip Code Memory On-chip RAMProgrammable Counter Array PCA Serial I/O PortAddress Spaces Page S1FFH Address Spaces for MCS 251 MicrocontrollersFfffffh Compatibility with the MCS 51 Architecture Ffffh MovcMovx FFHFF0000H-FFFFFFH 8XC251SA, SB, SP, SQ Memory Space 00FFFFH Feffffh01FFFFH FFFFF7H On-chip General-purpose Data RAM Type of Code Memory Accessing On-chip Code Memory in RegionMinimum Times to Fetch Two Bytes of Code External Memory 8XC251SA, SB, SP, SQ Register FileWR8 WR0 WR2 WR4 WR6DR8 DR0 DR4Bank Address Range PSW Selection Bits RS1 RS0Accumulator and B Register Byte, Word, and Dword RegistersDedicated Registers SPH Sbeh SPHDpxl DPHExtended Data Pointer, DPX Extended Stack Pointer, SPXRegister File Name Mnemonic Location SFRs MnemonicSpecial Function Registers Sfrs XC251SA, SB, SP, SQ SFR Map and Reset Values Mnemonic Name Address Core SFRsI/O Port SFRs Timer/Counter and Watchdog Timer SFRs Serial I/O SFRs10. Programmable Counter Array PCA SFRs Mnemonic NameSE9H SF9HCCAP0L SeahDevice Configuration Page Configuration Overview Device ConfigurationConfiguration Array On-chip Configuration Array External Size of External Address Configuration BitsExternal Addresses for Configuration Array Configuration Byte Location Selector Ucon WSA1# WSA0# UCONFIG0 1Bit Function Number Mnemonic UCONFIG1 1 WSB1# WSB0#Configuring the External Memory Interface Mode and Nonpage Mode PAGE#Memory Signal Selections RD10 PSEN# WR#2.2 RD10 = 01 17 External Address Bits Configuration Bits RD102.1 RD10 = 00 18 External Address Bits RD10 = PSEN#, WR#Internal/External Address Mapping RD10 = 10 PSEN#Wait State Configuration Bits Configuration Bits WSA10#, WSB1#Configuration Bit WSB 2.3 RD10 = 10 16 External Address BitsOpcode Configurations SRC Configuration Bit XALE#RD#, WR#, PSEN# External Wait States 8XC251SxSelecting Binary Mode or Source Mode Instruction Opcode Binary Mode Source ModeExamples of Opcodes in Binary and Source Modes DEC aBinary Mode Opcode Map Source Mode Opcode MapInterrupt Mode Intr Mapping ON-CHIP Code Memory to Data Memory EMAP#Programming Page Source Mode or Binary Mode Opcodes Programming Features of the MCS 251 ArchitectureData Types Register NotationAddress Notation Data TypesRegister Destination Source Register Range A3H B6HA3H B6H WR0 MOV WR0,#A3B6H Data Addressing Modes Addressing ModesData Instructions Direct Register AddressingImmediate Indirect 00H-FFH0000H-FFFFH @DPTR, @A+DPTR 0000H-FFFFH @A+DPTR, @A+PC@WR30 + Ffffh Displacement Arithmetic InstructionsLogical Instructions Data Transfer Instructions BIT Instructions Bit AddressingBit-addressable Locations Architecture Bit-addressable LocationsLocation Addressing MCS Mode Architecture Control InstructionsAddressing Two Sample Bits Addressing Modes for Bit InstructionsDescription Address Bits Address Range Addressing Modes for Control InstructionsAddressing Modes for Control Instructions Conditional Jumps Compare-conditional Jump InstructionsOperand Relation Type JNE JGE JLEUnconditional Jumps Calls and ReturnsProgram Status Words 10. The Effects of Instructions on the PSW and PSW1 Flags Instruction Type Flags Affected 1PSW RS1RS0 Bank AddressProgram Status Word 1 Register PSW1Page Interrupt System Page Interrupt System Pin Signals Signal Type Description MultiplexedOverview WithInterrupt Enable Priority Enable 8XC251SA, SB, SP, SQ Interrupt Sources External InterruptsInterrupt System Special Function Registers Description AddressTimer Interrupts Interrupt Control MatrixPCA INT1#Serial Port Interrupt Interrupt EnableProgrammable Counter Array PCA Interrupt ET1 EX1 ET0 EX0 IE0ET2 Interrupt Priorities Level of PriorityInterrupt Priority Within Level IPH0.x MSB IPL0.x LSB Priority LevelIPH0 IPL0Interrupt Processing Interrupt ProcessResponse Time Variables Minimum Fixed Interrupt TimeVariable Interrupt Parameters Response Time Example #1 A4154-02 Interrupt Latency Variables Latency CalculationsActual vs. Predicted Latency Calculations T2EXBlocking Conditions Interrupt Vector CycleISRs in Process Page Input/Output Ports Page Pin Type Alternate Alternate Description Name Pin Name INPUT/OUTPUT Port OverviewInput/Output Port Pin Descriptions Port 0 and Port I/O ConfigurationsPort 1 and Port Port 1 and Port 3 Structure Port 0 StructurePort 2 Structure READ-MODIFY-WRITE Instructions QUASI-BIDIRECTIONAL Port Operation External Memory Access Port Loading8XC251SA, SB, SP, SQ USER’S Manual Instructions for External Data Moves InstructionsPage Timer/Counters Watchdog Timer Page TIMER/COUNTER Overview TIMER/COUNTER OperationS8AH S8CHS8BH S8DHTimer External SignalsSignal Type Description Alternate Name Function Timer 10 External Clock Inputs. When timer 10 operates as aMode 0 13-bit Timer Mode 1 16-bit TimerMode 2 8-bit Timer With Auto-reload Mode 3 Two 8-bit TimersTR0 GATE0 TR1Tmod GATE1M11 M01 M10 M00IE1 IT1 IE0 IT0 TconTF1 TR1 TF0 TR0 Auto-load Setup Example Mode 3 HaltTimer 0/1 Applications Pulse Width Measurements Capture Mode XTAL1 TH2 TL2TF2 TR2Auto-reload Mode Up Counter OperationRCAP2H RCAP2L TF2 EXF2 EXEN22.2 Up/Down Counter Operation XTAL1 EXF2TH2 TL2 RCAP2H RCAP2L T2EXBaud Rate Generator Mode Clock-out ModeRclk or Tclk CP/RL2# T2OE RCAP2H RCAP2LT2OE Watchdog Timer DescriptionT2MOD Xxxx XX00B T2OE DcenT2CON TF2 EXF2 Rclk TclkEXEN2 TR2 CP/RL2#WDT During PowerDown Using the WDTWDT During Idle Mode Programmable Counter Array Page Chapter Programmable Counter Array PCA DescriptionPCA TIMER/COUNTER Alternate Port UsageP1.6/CEX3/WAIT# A17/WCLKPCA CCON.7 CPS1 CPS0 Cidl ECF CMOD.2 CMOD.1 CMOD.7 CMOD.0 IDLCompare/Capture Module External I/O. Each compare/capture PCA Compare/Capture Module Mode Registers. Contain bits forPCA Special Function Registers SFRs 1 16-bit Capture Mode PCA COMPARE/CAPTURE ModulesPCA 16-bit Capture Mode 3 16-bit Software Timer Mode Compare ModesHigh-speed Output Mode PCA Software Timer and High-speed Output ModesPCA Watchdog Timer Mode CCAP4H CCAP4L Wdte CMOD.6 ECOM4Pulse Width Modulation Mode PCA 8-bit PWM ModePWM Variable Duty Cycle Cmod Cidl WdteCPS1 CPS0 ECF CPS1 CPS0TOGx PWMx ECCFx Module Mode CconCCF4 CCF3 CCF2 CCF1 CCF0 Bit Function NumberCCAPMx x = CCAPM1 Sdbh CCAPM2 Sdch CCAPM3 Sddh CCAPM4 SdehPage Serial I/O Port Page Serial Port Signals Function Type Description MultiplexedSerial Port Special Function Registers Mnemonic Description AddressA8H B8HSM0 SM1 Mode Description Baud RateScon Modes of Operation Synchronous Mode ModeTransmission Mode Transmit ReceiveAsynchronous Modes Modes 1, 2, Reception Modes 1, 2Automatic Address Recognition Framing BIT Error Detection Modes 1, 2,Multiprocessor Communication Modes 2 Given Address Broadcast Address Saddr or SadenReset Addresses Baud Rate for ModeBaud Rates for Mode Baud RatesTimer 1 Generated Baud Rates Modes 1 Selecting Timer 1 as the Baud Rate GeneratorTimer 1 Generated Baud Rates for Serial I/O Modes 1 Timer 2 Generated Baud Rates Modes 1Selecting Timer 2 as the Baud Rate Generator SMOD1Receiver Transmitter Bit Selecting the Baud Rate GeneratorsRclck Tclck RCAP2H Timer 2 Generated Baud RatesOscillator Baud Rate Minimum Hardware Setup Page Minimum Hardware Setup Minimum SetupPower and Ground Pins Unused PinsElectrical Environment Noise ConsiderationsXTAL1 XTAL2 Clock SourcesOn-chip Oscillator Crystal Cmos On-chip Oscillator Ceramic ResonatorExternal Clock Reset External Clock Drive WaveformsReset Operation Externally Initiated ResetsWDT Initiated Resets Power-on Reset RST Xtal PSEN# ALESpecial Operating Modes Page Power Control Register Power Off FlagGeneral Serial I/O Control BitsPcon SMOD1 SMOD0 POFGF1 GF0 IDL SMOD1Mode Program Port Memory Pin PinsPin Conditions in Various Modes ALE PSEN#Idle Mode Entering Idle ModeExiting Idle Mode Powerdown ModeEntering Powerdown Mode Exiting Powerdown ModeExiting Once Mode ON-CIRCUIT Emulation Once ModeEntering Once Mode Page External Memory Interface Page Chapter External Memory Interface External Memory Interface Signals Address LineAddress Line 16. See RD# RD1 RD0Mode Bus Cycle Bus Activity State External BUS CyclesBus Cycle Definitions Bus Cycle Definitions No Wait StatesNonpage Mode Bus Cycles External Code Fetch Nonpage ModeMode Bus Cycles External Data Write Nonpage ModeExternal Code Fetch Page Mode External Data Read Page Mode Extending RD#/WR#/PSEN# External BUS Cycles with Configurable Wait StatesWait States External Code Fetch Nonpage Mode, One RD#/PSEN# Wait State Extending ALE External BUS Cycles with REAL-TIME Wait StatesXxxx XX00B Rtwce Rtwe WconSA7H Real-time Wait State Bus Cycle Diagrams Real-time WAIT# Enable RtweReal-time Wait Clock Enable Rtwce Wclk ALE RD#/PSEN# Wclk ALE WR#14. External Data Read Page Mode, RT Wait State Configuration Byte BUS Cycles Nonpage ModePort 0 and Port 2 Pin Status in Nonpage Mode Port 0 and Port 2 Pin Status In Normal Operating ModePort Bit/16-bit Nonpage Mode Port 0 and Port 2 StatusPort 0 and Port 2 Pin Status in Page Mode External Memory Design Examples Example 1 RD10 = 00, 18-bit Bus, External Flash and RAM18. Address Space for Example 19. Bus Diagram for Example 2 80C251SB in Page Mode Example 2 RD10 = 01, 17-bit Bus, External Flash and RAM20. Address Space for Example Example 3 RD10 = 01, 17-bit Bus, External RAM 22. Address Space for Example Example 4 RD10 = 10, 16-bit Bus, External RAM PROM/EPROM24. Address Space for Example Example 5 RD10 = 11, 16-bit Bus, External Eprom and RAM An Application Requiring Fast Access to the StackAn Application Requiring Fast Access to Data 25. Bus Diagram for Example 5 80C251SB in Nonpage Mode Eprom RAM27. Bus Diagram for Example 6 80C251SB in Page Mode Example 6 RD10 = 11, 16-bit Bus, External Eprom and RAM28. Bus Diagram for Example 7 80C251SB in Page Mode Example 7 RD10 = 01, 17-bit Bus, External FlashProgramming Verifying Nonvolatile Memory Page Chapter Programming and Verifying Nonvolatile Memory Programming Considerations for On-chip Code Memory Programming and Verifying Modes General SetupEprom Devices Programming and Verifying Modes RST PSEN#PROG# Port AddressProgramming Algorithm 8XC251SProgramming Cycle Verify AlgorithmProgrammable Functions Configuration Bytes Lock Bit SystemEncryption Array Signature BytesLock Bit Function Lock Bits Programmed Protection TypeContents of the Signature Bytes Verifying the 83C251SA, SB, SP, SQ ROMPage Instruction Set Reference Page Appendix a Instruction SET Reference Notation for Instruction Operands Table A-1. Notation for Register OperandsRegister Notation MCSTable A-4. Notation for Bit Addressing Table A-2. Notation for Direct AddressesTable A-3. Notation for Immediate Addressing Opcode MAP and Supporting Tables Table A-6. Instructions for MCS 51 MicrocontrollersTable A-7. New Instructions for the MCS 251 Architecture Bin A5x8 A5x9 A5xA A5xB A5xC A5xD A5xE A5xF SrcTable A-8. Data Instructions Table A-9. High Nibble, Byte 0 of Data InstructionsInstruction ByteBit Instruction Table A-10. Bit InstructionsTable A-11. Byte 1 High Nibble for Bit Instructions Table A-12. PUSH/POP Instructions Table A-13. Control InstructionsEret TrapTable A-14. Displacement/Extended MOVs Table A-17. Shifts Table A-15. INC/DECTable A-16. Encoding for INC/DEC Execution Times for Instructions that Access the Port SFRs Instruction SET SummaryTable A-18. State Times to Access the Port SFRs CaseInstruction SET Reference Instruction Summaries Table A-19. Summary of Add and Subtract InstructionsAdd ADD dest,src Subtract SUB dest,srcDest,src Binary Mode Source Mode Table A-20. Summary of Compare InstructionsCompare CMP dest,src CMPTable A-21. Summary of Increment and Decrement Instructions INC DptrMUL AB DIV ABTable A-23. Summary of Logical Instructions CLR aCPL a RXX aSwap SRASRL Binary Mode Source Mode Table A-24. Summary of Move InstructionsMove with Zero Extension Movz dest,src Move from External Mem Movx dest,srcDir16,Rm Byte reg to dir addr 64K Dir16,WRj Movh MovsMovz Movc @A+DPTRTable A-25. Summary of Exchange, Push, and Pop Instructions XCHXchd PushMnemonic Src,dest Binary Mode Source Mode Table A-26. Summary of Bit InstructionsMove Bit from Carry MOV bit,CY SetbTable A-27. Summary of Control Instructions States BytesJSG CjneDjnz NOPTable A-28. Flag Symbols Instruction DescriptionsVariations ADD A,#data Binary Mode Encoding Hex Code OperationADD dest,src Function Add ADD R1,R0ADD ADD DRkd,DRks Binary Mode Source Mode Bytes States Encoding ADD Rm,#data Binary ModeADD WRj,#data16 Binary Mode ADD DRk,#0data16 Binary ModeADD Rm,dir8 Binary Mode Source Mode Bytes States Encoding ADD WRj,dir8 Binary ModeWRj ← WRj + dir8 ADD Rm,dir16 Binary Mode Rm ← Rm + dir16 ADD WRj,dir16 Binary ModeADD Rm,@WRj Binary Mode Source Mode Bytes States Encoding WRj ← WRj + dir16ADD Rm,@DRk Binary Mode Source Mode Bytes4 States4 Encoding Variations Addc A,#data Binary ModeAddc A,src Function FlagsAddc Ajmp addr11 Function Description Flags Example Ajmp JmpadrVariations ANL dir8,A Binary Mode Source Mode Bytes States Hex Code Binary Mode = EncodingANL A,#data Binary Mode ANL R1,R0ANL WRjd ← WRjd Λ WRjs ANL WRjd,WRjs Binary Mode Source Mode Bytes States EncodingANL WRj,#data16 Binary Mode Binary Mode = A5Encoding Source Mode = Encoding Operation ANL WRj,dir8 Binary ModeRm ← Rm Λ dir16 ANL WRj,dir16 Binary Mode WRj ← WRj Λ dir8ANL Rm,@WRj Binary Mode Source Mode Bytes States Encoding ANL Rm,@DRk Binary ModeHex Code Binary Mode = A5Encoding Source Mode = Encoding ANL CY,src-bitANL CY,bit51 Binary Mode Source Mode Bytes States ANL CY,/bit51 Binary Mode Source Mode Bytes StatesANL CY,bit Binary Mode Source Mode Bytes States MOV CY,P1.0ANL CY,/bit Binary Mode Source Mode Bytes States Cjne dest,src,relReqlow Wait Cjne A,P1,WAITVariations Cjne A,#data,rel ThenElse Cjne A,dir8,relCLR a Cjne Rn,#data,relNot Taken CLR CY CLRBit51 ← CLR bit Binary Mode Source Mode Bytes States Variations CMP Rmd,Rms Binary ModeCMP dest,src Function CMP R1,R0CMP WRjd,WRjs Binary Mode WRjd WRjs CMP DRkd,DRks Binary ModeDRkd DRks CMP Rm,#data Binary Mode CMPCMP WRj,#data16 Binary Mode CMP Rm,dir8 Binary ModeRm dir16 CMP WRj,dir16 Binary Mode CMP WRj,dir8 Binary ModeCMP Rm,dir16 Binary Mode CMP Rm,@DRk Binary Mode Source Mode Bytes States Encoding CPL aCPL CPL CYCPL bit Binary Mode Source Mode Bytes States Operation CPLAddc A,R3 DA a DEC byte FunctionDEC a DECDEC WRj,#short DEC Rn Bytes States EncodingDEC dest,src Function Decrement DIV dest,src Function Divide DIV R1,R5Binary Mode = A5Encoding Source Mode = Encoding Location ContentsDIV AB Djnz byte,rel-addrDjnz 40H,LABEL1 Djnz 50H,LABEL2 Djnz 60H,LABEL Toggle CPL P1.7 Djnz R2,TOGGLEVariations Djnz dir8,rel Djnz Rn,relEcall dest Function Ecall SubrtnEjmp Jmpadr Ecall @DRk Binary Mode Source Mode Bytes States EncodingEjmp dest Function INC Byte Function Increment Ejmp @DRk Binary Mode Source Mode Bytes States EncodingEret ← a + INC dir8 Binary Mode Dir8 ← dir8 + INC @Ri Binary ModeINC @R0 INC R0 INC aINC dest,src Function Increment INC Rn Binary ModeINC WRj,#short Binary Mode WRj ← WRj + #short JB P1.2,LABEL1 JB ACC.2,LABEL2 Variations JB bit51,rel Binary Mode Source ModeJB bit51,rel JB bit,rel Function JBC ACC.3,LABEL1 JBC ACC.2,LABEL2 Variations JBC bit51,rel Binary Mode Source ModeJBC bit51,rel JBC bit,rel JBC bit,rel Binary Mode Source Mode Hex Code in Binary Mode = Encoding Source Mode = EncodingJC rel Flags Example Bytes States EncodingJG rel JE rel FunctionJE LABEL1 Bytes States Encoding Binary Mode Source Mode Not TakenJG LABEL1 JLE relJMP @A+DPTR JNB bit51,rel JNB bit,relVariations JNB bit51,rel Binary Mode Source Mode JNB P1.3,LABEL1 JNB ACC.3,LABEL2JNC rel JNC LABEL1 CPL CY JNC LABEL2JNE rel JNE LABEL1JNZ rel JNZ LABEL1 INC a JNZ LABEL2JSG rel JSG LABEL1Jsge rel Jsge LABEL1JSL rel JSL LABEL1JZ rel Jsle relJsle LABEL1 Lcall addr16 Binary Mode JZ LABEL1 DEC a JZ LABEL2Lcall dest Function Lcall SubrtnLcall @WRj Binary Mode Source Mode Bytes States Encoding Source Mode = Encoding OperationLjmp addr16 Binary Mode Ljmp dest FunctionPC ← addr.150 MOV A,#data Binary Mode Source Mode Bytes States EncodingLjmp Ri ← #data MOV Rn,#data Binary Mode Rn ← #data MOV dir8,dir8 Binary ModeOperation MOV MOVDir8 ← Rn MOV @Ri,dir8 Binary Mode Dir8 ← dir8 MOV dir8,@Ri Binary ModeDir8 ← Ri MOV dir8,Rn Binary Mode MOV A,dir8 Binary Mode Source Mode Bytes States Encoding ← dir8 MOV A,@Ri Binary Mode← Ri MOV A,Rn Binary Mode MOV Rn,dir8 Bytes States EncodingMOV Rn,A Binary Mode MOV dir8,A Binary Mode Source Mode Bytes States EncodingDir8 ← a MOV @Ri,A Binary Mode MOV WRj,#data16 Binary Mode Rmd ← Rms MOV WRjd,WRjs Binary ModeMOV DRkd,DRks Binary Mode Source Mode Bytes States Encoding WRj ← #data16 #data hi #data low MOV WRj,dir8 Binary Mode Source Mode Bytes States Encoding MOV DRk,dir8 Binary Mode Source Mode Bytes States EncodingMOV Rm,dir16 Binary Mode Source Mode Bytes States Encoding MOV WRj,dir16 Binary ModeWRj ← dir16 MOV DRk,dir16 Binary Mode MOV WRjd,@WRjs Binary Mode MOV WRj,@DRk Binary ModeMOV dir8,Rm Binary Mode Source Mode Bytes States Encoding MOV dir8,WRj Binary ModeDir16 ← Rm MOV dir16,WRj Binary Mode Dir8 ← WRj MOV dir8,DRk Binary ModeDir8 ← DRk MOV dir16,Rm Binary Mode MOV @WRjd,WRjs Binary Mode MOV @WRj,Rm Binary Mode Source Mode Bytes4 States4 EncodingMOV @DRk,Rm Binary Mode Source Mode Bytes States Encoding MOV @DRk,WRj Binary Mode Rm ← WRj + dis MOV WRj,@WRj + dis16 Binary ModeMOV @WRj + dis16,WRj Binary Mode Rm ← DRk + dis MOV WRj,@DRk + dis24 Binary ModeMOV @WRj + dis16,Rm Binary Mode MOV dest-bit,src-bit MOV @DRk + dis24,Rm Binary ModeMOV @DRk + dis24,WRj Binary Mode MOV P1.3,CY MOV CY,P3.3 MOV P1.2,CY Bit51 ← CY MOV CY,bit51 Binary ModeMOV bit,CY Binary Mode Source Mode Bytes States MOV CY,bit Binary Mode Source Mode Bytes States Binary Mode Source Mode Bytes States EncodingMOV DPTR,#data16 MOV DPTR,#1234HMovc A,@A+base-reg Function Relpc INC Movc @A+PC RETMovc A,@A+PC Movc A,@A+DPTRMovs WRj,Rm Variations Movh DRk,#data16 Binary ModeMovh DRk,#data16 Movx dest,src Function ← Dptr Movx A,@Ri Binary Mode Movx A,@R1 Movx @R0,AMovx A,@DPTR MovxMovz WRj,Rm MUL dest,src Function Multiply MUL R1,R0MUL WRjd,WRjs Binary Mode Source Mode Bytes States Encoding MUL ABNOP Function Description FlagsBytes States Encoding Hex Code Operation NOP Setb P2.7Variations ORL dir8,A Binary Mode Source Mode Bytes States ORL dir8,#data Binary Mode Source Mode Bytes StatesORL A,#data Binary Mode ORLORL A,dir8 Binary Mode Source Mode Bytes States Encoding ← a V dir8 ORL A,@Ri Binary ModeORL A,Rn Binary Mode ORL Rmd,Rms Binary ModeORL WRjd,WRjs Binary Mode Source Mode Bytes States Encoding ORL Rm,#data Binary Mode Source Mode Bytes States EncodingORL WRj,#data16 Binary Mode WRjd←WRjd V WRjsORL Rm,dir8 Binary Mode ORL WRj,dir8 Binary ModeWRj ← WRj V dir8 ORL Rm,dir16 Binary Mode Rm ← Rm V dir16 ORL WRj,dir16 Binary ModeORL Rm,@WRj Binary Mode Source Mode Bytes4 States3 Encoding Rm ← Rm V WRj ORL Rm,@DRk Binary ModeWRj ← WRj V dir16 ORL CY,src-bitORL CY,/bit51 Binary Mode Source Mode Bytes States ORL CY,bit Binary Mode Source Mode Bytes StatesORL CY,/bit Binary Mode Source Mode Bytes States POP dir8 Binary ModePOP src Function POP DPH POP DPLPOP DRk Binary Mode POP Rm Binary ModePOP WRj Binary Mode Push #data Binary Mode Push dest FunctionPush DPL Push DPH Operation PushPush #data16 Binary Mode Push WRj Binary ModeRET Operation RETReti RLC a RL aRL a Example Bytes States Encoding RLC aRR a RR aRRC a Flags Example Bytes States Encoding Hex Code OperationRRC a Setb bit Function Set bitSetb Setb CYSLL src SLL Rm Binary ModeSjmp Reladr SRA src SRA WRj Binary Mode Source Mode Bytes States Encoding SRL srcSUB R1,R0 Variations SUB Rmd,Rms Binary ModeSUB dest,src Function Subtract SUB DRkd,DRks Binary Mode Source Mode Bytes States Encoding SUBDRkd ← DRkd DRks SUB WRj,#data16SUB DRk,#data16 Binary Mode SUB Rm,dir8 Binary Mode Source Mode Bytes StatesHex Code Binary Mode = A5Encoding SUB WRj,dir8 Binary ModeRm ← Rm dir16 SUB WRj,dir16 Binary Mode SUB Rm,@WRj Binary Mode Source Mode Bytes4 States3 EncodingRm ← Rm WRj SUB Rm,@DRk Binary Mode SUB Rm,dir16Subb A,R2 Variations Subb A,#data Binary ModeSubb A,src-byte Function Subb Trap Swap aSwap a XCH A,@R0 Binary Mode = Encoding Source Mode = EncodingXCH A,byte XCH A,@Ri Binary Mode Source Mode Bytes States Encoding Operation XCHXCH A,Rn Bytes States Encoding Xchd A,@Ri FunctionXRL dir8,A Binary Mode Source Mode Bytes States XRL A,R0XRL A,dir8 Binary Mode Source Mode Bytes States Encoding XRLDir8 ← dir8 ∀ a XRL A,#dataXRL A,Rn XRL WRjd,WRjsXRL Rm,#data XRL WRj,#data16XRL Rm,dir8 XRL WRj,dir8XRL Rm,@Wrj WRj ← WRj ∀ dir8 XRL Rm,dir16 Binary Mode\XRL WRj,dir16 XRL Rm,@Drk Binary Mode Page Signal Descriptions Page 8XC251SA 8XC251SB8XC251SP 8XC251SQPower & Ground Name Address & Data NamePlcc DIP Processor Control Name8XC251SP 8XC251SQ Component As mounted On PC boardCEX20 GND PWRDIP DIP WAIT# Table B-3. Memory Signal Selections RD10 Page Registers Page Appendix C Registers Table C-1 XC251SA, SB, SP, SQ SFR Map Table C-2. Core SFRs Table C-3. I/O Port SFRsSB9H Table C-5. Timer/Counter and Watchdog Timer SFRsTable C-4 Serial I/O SFRs Table C-6. Programmable Counter Array PCA SFRs Table C-7. Register File Mnemonic AddressACC F0HCCAPxH, CCAPxL x = CCAP1H,L SFBH, SebhCCAP2H,L SFCH, Sech CCAP3H,L SFDH, SedhCCAPM1 Sdbh CCAPM2 SdchCCAPM3 Sddh CCAPM4 SdehCH, CL SF9H SE9HCidl Wdte CPS1 CPS0 ECF DPH DPLDpxl Global Interrupt Enable IPH0 IPL0 Priority Level IPL0 P1.70 Port 1 Register P0 ContentsP1 Contents P3.70 Port 3 Register P2 ContentsP3 Contents SMOD1 SMOD0 POF GF1 GF0 IDL See -10 on RCAP2H, RCAP2L RCAP2L ScahSADDR.70 SaddrSlave Individual Address Saden SbufData Sent/Received by Serial I/O Port SBUF.70FE/SM0 SM1 SM2 REN TB8 RB8 SP Contents SP.70 Stack PointerSPH.70 Stack Pointer High SPH ContentsSPH TF2 EXF2 Rclk Tclk EXEN2 TR2 Xxxx XX00B T2OE DcenTF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 Address S89H Reset State TH0, TL0 TH0 S8CHTL0 S8AH TH1, TL1TH2, TL2 TH2 ScdhTL2 Scch Rtwce RtweWDTRST.70 Wdtrst Contents Write-onlyWdtrst Page Glossary Page Glossary Dptr Eprom LSB Otprom Uart Word Page Index Page Index Index-2 Index-3 Index-4 Index-5 Index-6 Index-7 Index-8 Index-9
Related manuals
Manual 20 pages 52.52 Kb

Embedded Microcontroller, 8XC251SP, 8XC251SA, 8XC251SQ, 8XC251SB specifications

The Intel 8XC251 series of embedded microcontrollers is a family of versatile and powerful devices, designed to meet the demands of a wide range of applications. With models such as the 8XC251SB, 8XC251SQ, 8XC251SA, and 8XC251SP, this series offers unique features while maintaining a high level of performance and reliability.

At the heart of the 8XC251 microcontrollers is the 8051 architecture, which provides a 16-bit processor capable of executing complex instructions efficiently. This architecture not only allows for a rich instruction set but also facilitates programming in assembly language and higher-level languages like C, which are essential for developing sophisticated embedded systems.

One of the significant features of the 8XC251 family is its integrated peripherals, including timer/counters, serial communication interfaces, and interrupt systems. These peripherals enable developers to implement timing functions, data communication, and real-time processing, all of which are crucial in modern embedded applications. The 8XC251SB and 8XC251SQ models, for instance, come equipped with multiple I/O ports that allow for interfacing with other devices and systems, enhancing their functionality in various environments.

The memory architecture of the 8XC251 devices is noteworthy, featuring on-chip ROM, RAM, and EEPROM. The on-chip memory allows for fast access times, which is essential for executing programs efficiently. Moreover, the EEPROM serves as non-volatile memory, enabling the storage of configuration settings and important data that must be retained even when power is lost.

In terms of operating voltage, the 8XC251 devices are designed to operate in a wide range, typically between 4.0V and 6.0V. This flexibility makes them suitable for battery-powered applications, where energy efficiency is critical. The power management features, including reduced power modes, further enhance their suitability for portable devices.

Lastly, the 8XC251 series is supported by a wide range of development tools and resources, allowing engineers and developers to streamline the development process. This support, combined with the microcontrollers' robust features, makes the Intel 8XC251 family a reliable choice for various embedded applications, such as industrial automation, automotive systems, and consumer electronics.

Overall, the Intel 8XC251SB, 8XC251SQ, 8XC251SA, and 8XC251SP deliver high performance, versatility, and ease of use, making them a preferred choice for embedded system designers looking to develop efficient and effective solutions.